Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7

  • Oh, In-Jae (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Dong-Hyun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Eun-Kyoung (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Published : 2009.02.28

Abstract

The effects of culture conditions on succinic acid production and its possible scale-up have been studied. Mannheimia succiniciproducens LPK7, engineered for enhanced production of succinic acid and reduced by-product secretion, was used for the experiments. Mannheimia succiniciproducens LPK7 is a knock-out strain of wild type deficient in the ldhA, pflB, and pta-ackA genes, and is derived from Mannheimia succiniciproducens MBEL55E. Process optimization of factors including optimal temperature, pH, carbon source, and nitrogen source was performed to enhance the production of succinic acid in flasks. To observe scale-up effects, batch fermentation was carried out at various working volumes. At a working volume of 7.0 l, the final succinic acid concentration and yield were 15.4g/l and 0.86g/g. This result shows similar amount of succinic acid obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.

Keywords

References

  1. Agarwal, L., J. Isar, G. K. Meghwanshi, and R. K. Saxena. 2007. Influence of environmental and nutritional factors on succinic acid production and enzymes of reverse tricarboxylic acid cycle from Enterococcus flavescens. Enz. Microbial Technol. 40: 629-636 https://doi.org/10.1016/j.enzmictec.2006.05.019
  2. Hong, S. H. and S. Y. Lee. 2002. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 58: 286-290 https://doi.org/10.1007/s00253-001-0899-y
  3. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  4. Isar, J., L. Agarwal, S. Saran, and R. K. Saxena. 2006. Succinic acid production from Bacteroides fragilis: Process optimization and scale up in a bioreactor. Anaerobe 12: 231-237 https://doi.org/10.1016/j.anaerobe.2006.07.001
  5. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668 https://doi.org/10.1007/s00253-002-0935-6
  6. Lee, P. C., S. Y. Lee, and H. N. Chang. 2008. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system. J. Microbiol. Biotechnol. 18: 1252-1256
  7. Lee, P. C., S. Y. Lee, and H. N. Chang. 2008. Succinic acid production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/ lactose. J. Microbiol. Biotechnol. 18: 1792-1796
  8. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 1999. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochem. 35: 49-55 https://doi.org/10.1016/S0032-9592(99)00031-X
  9. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48 https://doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N
  10. Lee, P. C., W. G. Lee, S. H. Kwon, S. Y. Lee, and H. N. Chang. 1999. Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the $H_2/CO_2$ supply and glucose concentration. Enz. Microbial Technol. 24: 549-554 https://doi.org/10.1016/S0141-0229(98)00156-2
  11. Lee, S. J., H. H. Song, and S. Y. Lee. 2006. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72: 1939- 1948 https://doi.org/10.1128/AEM.72.3.1939-1948.2006
  12. Lin, H., G. N. Bennett, and K. Y. San. 2005. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. Microbiol. Biotechnol. 32: 87-93 https://doi.org/10.1007/s10295-005-0206-5
  13. McKinlay, J. B., C. Vieille, and J. G. Zeikus. 2007. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740 https://doi.org/10.1007/s00253-007-1057-y
  14. Oh, I. J., H. W. Lee, C. H. Park, S. Y. Lee, and J. W. Lee. 2008. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. biotechnol. 18: 908-912
  15. Song, H. H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enz. Microbial Technol. 39: 352-361 https://doi.org/10.1016/j.enzmictec.2005.11.043
  16. Van der Werf, M. J., M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1997. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch. Microbiol. 167: 332-342 https://doi.org/10.1007/s002030050452
  17. Zeikus, J. G., M. K. Jain, and P. Elankivan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552 https://doi.org/10.1007/s002530051431