DOI QR코드

DOI QR Code

Getter Properties of Ti80-XZr20VX Alloy Powders

Ti80-XZr20VX 합금분말의 게터 특성

  • Park, Je-Shin (Minerals Resources Research Division, Industrial Materials Research Department Korea Institute of Geoscience, Mining and Materials) ;
  • Kim, Won-Baek (Minerals Resources Research Division, Industrial Materials Research Department Korea Institute of Geoscience, Mining and Materials) ;
  • Soh, Chang-Youl (Minerals Resources Research Division, Industrial Materials Research Department Korea Institute of Geoscience, Mining and Materials) ;
  • Cho, Sung-Wook (Minerals Resources Research Division, Industrial Materials Research Department Korea Institute of Geoscience, Mining and Materials)
  • 박제신 (한국지질자원연구원 광물자원연구본부 산업원료화연구실) ;
  • 김원백 (한국지질자원연구원 광물자원연구본부 산업원료화연구실) ;
  • 서창열 (한국지질자원연구원 광물자원연구본부 산업원료화연구실) ;
  • 조성욱 (한국지질자원연구원 광물자원연구본부 산업원료화연구실)
  • Published : 2009.02.28

Abstract

The activation temperatures and hydrogen sorption rates of $Ti_{80-X}Zr_{20}V_X$ alloys were evaluated at room temperature. The alloy powders were prepared by arc melting and then hydride-dehydride(HDH) process. The alloy powders were apt to activate by increase of vanadium in Ti-Zr-V alloys. The easy activation was explained in terms of surface oxygen content which decreased with increase of vanadium on Ti-Zr-V alloys.

Keywords

References

  1. R. J. Knize, J. L. Cecchi and H. F. Dylla: J. Vac. Sci. Technol., 20 (1982) 1135. https://doi.org/10.1116/1.571588
  2. K. Ichimura, N. Inoue, K. Watanabe and T. Takeuchil: J. Nucl. Mater., 128 (1984) 876. https://doi.org/10.1016/0022-3115(84)90474-4
  3. R. Guo, L. X. Chen, Y. Q. Lei, S. Q. Li, Y. W. Zeng and Q. D. Wang: J. Alloys Compd., 358 (2003) 223. https://doi.org/10.1016/S0925-8388(03)00073-2
  4. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu: J. Alloys Compd., 372 (2004) 272. https://doi.org/10.1016/j.jallcom.2003.09.153
  5. H. Yuan, Y. An, G. Xu and C. Chen: Mater. Chem. Phy., 83 (2004) 340. https://doi.org/10.1016/j.matchemphys.2003.10.015
  6. X. B. Yu, Z. Wu and N. X. Xu: Physica B, 344 (2004) 456. https://doi.org/10.1016/j.physb.2003.11.002
  7. J. K. Chang, D. N. Shong and W. T. Tsai: Mater. Chem. Phy., 83 (2004) 361. https://doi.org/10.1016/j.matchemphys.2003.10.011
  8. H. Pan, Y. Zhu, M. Gao, Y. Liu, R. Li, Y. N. Lei and Q. Wang: J. Alloys Compd., 364 (2004) 271. https://doi.org/10.1016/S0925-8388(03)00523-1
  9. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu: J. Alloys Comp., 375 (2004) 221. https://doi.org/10.1016/j.jallcom.2003.11.027
  10. R. Li, J. Wu, S. Zhou and X. Wang: J. Alloys Compd., 363 (2004) 292. https://doi.org/10.1016/S0925-8388(03)00483-3
  11. X. G. Li, T. Otahara, S. Takahashi, T. Shoji. H. M. Kimura and A. Inoue: J. Alloys Compd., 297 (2000) 303. https://doi.org/10.1016/S0925-8388(99)00614-3
  12. K. Cheistmann: Surf. Sci. Rep. 9 (1988) 1. https://doi.org/10.1016/0167-5729(88)90009-X
  13. D. J. Lee, W. Kim, S. R. In, J. Y. 1m and K. B. Kim: J. Kor. Vac. Soc., 14(1) (2005) 1 (Korean).
  14. J. S. Park, S. B. Woo, C. Y. Suh, M. Y. Park, G. C. Shim and W. B. Kim: J. Kor. lust. Mat. & Mater., 44(5) (2006) 344 (Korean).
  15. J. Park, W. Kim and M. Won: Mater. Trans., 48(5) (2007) 1012. https://doi.org/10.2320/matertrans.48.1012