DOI QR코드

DOI QR Code

The Formation of Hybridized Porous Structure of Al Alloy by Alkali Surface Modification

알칼리 표면개질을 통한 다공성 알루미늄 합금의 하이브리드 기공구조 형성

  • Seo, Young-Ik (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young-Moon (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Young-Jung (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Dae-Gun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Kyu-Hwan (Computational Science Center, Korea Institute of Science and Technology) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University)
  • 서영익 (한양대학교 신소재공학부) ;
  • 김영문 (한양대학교 신소재공학부) ;
  • 이영중 (한양대학교 신소재공학부) ;
  • 김대건 (한양대학교 신소재공학부) ;
  • 이규환 (한국과학기술연구원) ;
  • 김영도 (한양대학교 신소재공학부)
  • Published : 2009.02.28

Abstract

To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.

Keywords

References

  1. B. Jiang, N. Q. Zhao, C. S. Shi and J. J. Li: Scripta Mater., 53 (2005) 781. https://doi.org/10.1016/j.scriptamat.2005.04.055
  2. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibbson, J. W. Hutchinson and H. N. G. Wadley: Metal Foams: a design guide, Butterworth-Heinemann College (2000).
  3. K. I. Salas and A. M. Waas: J. Heat Transfer, 129 (2007) 1217. https://doi.org/10.1115/1.2739598
  4. J. F. Rakow and A. M. Waas: J. Spacecr. Rockets, 42 (2005) 832. https://doi.org/10.2514/1.9741
  5. J. F. Despois and A. Mortensen: Acta Mater., 53 (2005) 1381. https://doi.org/10.1016/j.actamat.2004.11.031
  6. R. S. Barhate, C. K. Loong and S. Ramakrishna: J. Mem. Sci., 283 (2006) 209. https://doi.org/10.1016/j.memsci.2006.06.030
  7. J. L. Lage, A. K. Weinert, D. C. Price and R. M. Weber: Int. J. Heat Mass Transfer, 39 (1996) 3633. https://doi.org/10.1016/0017-9310(96)00035-X
  8. D. Girlich and U. Franzke: Adv. Eng. Mater. 3 (2001) 351.
  9. F. Montefusco: Filtr. Sep., 42 (2005) 30.
  10. Z. Ma, M. Kotaki and S. Ramakrishna: J. Membr. Sci., 272 (2006) 179. https://doi.org/10.1016/j.memsci.2005.07.038
  11. M. B. Corte and E. van der Lingen: Mater. Forum, 26 (2002) 1.
  12. M. Haruta: Catal. Today, 36 (1997) 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  13. M. K. Min, J. H. Cho, W. K. Cho and H. Kim: Electrochim. Acta, 45 (2000) 4211. https://doi.org/10.1016/S0013-4686(00)00553-3
  14. J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher and A. V. Hamza: Nanotechnology, 18 (2007) 275602. https://doi.org/10.1088/0957-4484/18/27/275602
  15. R. Q. Guo, P. K. Rohatgi and D. Nath: J. Mater. Sci., 32 (1997) 3971. https://doi.org/10.1023/A:1018625118090
  16. G. B. Schaffer, T. B. Sercombe and R. N. Lumley: Mater. Chem. Phys., 67 (2001) 85. https://doi.org/10.1016/S0254-0584(00)00424-7
  17. T. B. Sercombe and G. B. Schaffer: Acta Mater., 47 (1999) 689. https://doi.org/10.1016/S1359-6454(98)00353-X
  18. K. H. Min, S. P. Kang, B. H. Lee, J. K. Lee and Y. D. Kim: J. All. Com., 419 (2006) 290. https://doi.org/10.1016/j.jallcom.2005.09.070