Abstract
In a Gas Insulated Substation (GIS), Very Fast Transients (VFTs) are generated mainly due to switching operations. These transients may cause internal faults, i.e., layer-to-layer faults in a capacitively graded bushing as it is one of the most important terminal equipment for GIS. The healthiness of the bushing is generally verified by measuring its leakage current. However, the change in current magnitude/pattern is only marginal for different types of fault conditions. Leakage current monitoring (LCM) systems generate large amounts of data and computer aided interpretation of defects may be of great assistance when analyzing this data. In view of the above, ANN techniques have been used in this study for identification of these minor faults. A single layer perceptron network, a two layer feed-forward back propagation network and cascade correlation (CC) network models are used to identify interlayer faults in the bushing. The effectiveness of the CC network over perceptron and back propagation networks in identification of a fault has been analysed as part of the paper.