DOI QR코드

DOI QR Code

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation

진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성

  • Lee, Jeoung-Ju (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Sung, Byeong-Hoon (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Duk (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Chang-Young (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Kun-Ho (Department of Physics and Research Institute of Natural Science, Gyeongsang National University)
  • 이정주 (경상대학교 물리학과 및 기초과학 연구소) ;
  • 성병훈 (경상대학교 물리학과 및 기초과학 연구소) ;
  • 이종덕 (경상대학교 물리학과 및 기초과학 연구소) ;
  • 박창영 (경상대학교 물리학과 및 기초과학 연구소) ;
  • 김건호 (경상대학교 물리학과 및 기초과학 연구소)
  • Published : 2009.11.30

Abstract

$Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.

진공증착법으로 $Cd_2GeSe_4$$Cd_2GeSe_4:Co^{2+}$ 박막을 ITO(indium tin oxide) 유리 기판 위에 제작하였다. 결정화는 증착된 박막들을 질소분위기의 전기로에서 열처리함으로서 이룰 수 있었다. X-선 회절 분석에 의하여 증착된 $Cd_2GeSe_4$$Cd_2GeSe_4:Co^{2+}$ 박막의 격자상수는 $a\;=\;7.405\;{\AA}$, $c\;=\;36.240\;{\AA}$$a\;=\;7.43\;{\AA}$, $c\;=\;36.81\;{\AA}$로서 능면체(rhombohedral) 구조이었고, 열처리 온도를 증가함에 따라 (113)방향으로 선택적으로 성장됨을 알 수 있었다. 열처리 온도를 증가시킴에 따라 입계 크기가 점차 커지고 판상구조로 결정화 되었다. 실온에서 측정한 광학적인 에너지 띠 간격은 열처리 온도의 증가에 따라 $Cd_2GeSe_4$ 박막의 경우 1.70 eV ~ 1.74 eV로 증가하였고, $Cd_2GeSe_4:Co^{2+}$ 박막의 경우 1.79 eV ~ 1.74 eV로 감소하였다. $Cd_2GeSe_4$$Cd_2GeSe_4:Co^{2+}$ 박막 내의 전하운반자들의 동역학적 거동을 광유기 방전 특성(PIDC : photoinduced discharge characteristics) 방법으로 조사하였다.

Keywords

References

  1. E. Kaldis, L. Krausbauer, and R. Widmer, J. Elec. Chem. Soc. 114, 1074 (1967) https://doi.org/10.1149/1.2424190
  2. K. Susa and H. Steinfink, Inorg. Chem. 10, 1754 (1971) https://doi.org/10.1021/ic50102a044
  3. B. Krebs and J. Mandt, Z. Anorg. Allg. Chemie. 338, 193 (1972)
  4. L. K. Samanta, D. K. Ghosh, and G. C. Bhar, Phys. Stat. Sol. 93, K51 (1986) https://doi.org/10.1002/pssa.2210930163
  5. C. Paorici, L. Zanotti, and G. Zuccalli, J. Crystal Growth 43, 705 (1986) https://doi.org/10.1016/0022-0248(78)90149-5
  6. E. Buehler, G. D. Boyd, and F. G. Storz, Appl. Phys. Lett. 18, 301 (1971) https://doi.org/10.1063/1.1653673
  7. G. D. Byod, H. M. Kasper, and J. H. Mcfee, IEEE J. Quantum Electr. QE7, 563 (1971)
  8. V. G. Baryshev, N. S. Boltivets, A. S. Borschhevskii, N. A. Goryunova, and P. T. Oreshkin, Soviet Phys. Semi. 4, 308 (1970)
  9. H. hahn and C. D. Lorent, Naturwissenschaften 45, 621 (1958)
  10. V. P. Svitlinets, N. I. Dovroshei, I. I. Muchichka, and V. N. Ivanitskii, IZV. Akad. Nauk SSSR Neorg. Mater. 22, 381 (1986)
  11. P. Quenez and P. Khodadad, Compt. Rend. Acad. Soc. (Paris) 268, 2294 (1969)
  12. D. T. Kim, K. S. Yu, C. D. Kim, H. L. Park, and W. T. Kim, J. Mater. Sci. Lett. 12, 1160 (1993)
  13. C. D. Kim, H. Lim, H. L. Park, J. E. Kim, H. G. Kim, and W. T. Kim, Thin Solid Films 224, 69(1993) https://doi.org/10.1016/0040-6090(93)90460-7
  14. M. Kishino, S. Tanaka, K. Senda, Y. Yamada, and T. Taguchi, J. Crystal Growth 214/215, 220 (2000) https://doi.org/10.1016/S0022-0248(00)00089-0
  15. C. D. Lokhande, P. S. Patil, A. Ennaoui, and H. Tributch, Appl. Surf. Sci. 123-124, 294 (1998) https://doi.org/10.1016/S0169-4332(97)00520-5
  16. R. Kumaresan, M. Ichimura, and E. Arai, Thin Solid Films. 414, 25 (2002) https://doi.org/10.1016/S0040-6090(02)00450-9
  17. T. L. Chu, S. S. Chu, G. Chen, J. Britt, C. Ferekides, and C. Q. Wu, J. Appl. Phys. 71, 3865 (1992) https://doi.org/10.1063/1.350851
  18. G. I. Rusu, M. E. Popa, G. G. Rusu, and I. Salaoru, Appl. Surf. Sci. 218, 222 (2002)
  19. 차원효, 윤지언, 황동현, 이철수, 이인석, 손영국, 한국 진공학회지 17, 28 (2008) https://doi.org/10.5757/JKVS.2008.17.1.028
  20. 박재규, 오병성, 유영문, 윤만영, 김대중, 최용대, 한국 진공학회지 16, 192 (2007) https://doi.org/10.5757/JKVS.2007.16.3.192
  21. Y. S. Park, K. H. Kim, J. J. Lee, and T. W. Kang, J. Korean Phys. Soc. 44, 875 (2004)
  22. J. J. Lee, C. S, Yang. Y. S. Park, K. H. Kim, M. S. Jin, H. L. Park, and W. T. Kim, J. Appl. Phys. 89, 3270 (2001) https://doi.org/10.1063/1.1339216
  23. H. Tung Li, J. Appl. Phys. 34, 1730 (1963) https://doi.org/10.1063/1.1702669
  24. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing company, Inc., 1978), Chap. 4, P. 107
  25. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), Chap. 1-3
  26. R. Poerschke, Data in Science and Technology (Springer-Verlag, Berlin, 1992)
  27. C. Manfredotti, A. Rizzo, L. Vasanelli, S. Galassini, and L. Rugieri, J. Appl. Phys. 44, 5463 (1973) https://doi.org/10.1063/1.1662177
  28. I. P. Batra and H. Seki, J. Appl. Phys. 41, 3409 (1970) https://doi.org/10.1063/1.1659432
  29. Jeoung Ju Lee, Jong Duk Lee, Byeong Yeol Ahn, and Kun Ho Kim, J. Korean Phys. Soc. 53, 3255 (2008) https://doi.org/10.3938/jkps.53.3255

Cited by

  1. Study on the Efficiency in Silocin Solar Cell vol.11, pp.7, 2010, https://doi.org/10.5762/KAIS.2010.11.7.2565
  2. Study on the Efficiency of Si-cell Depending on the Texturing vol.20, pp.3, 2011, https://doi.org/10.5757/JKVS.2011.20.3.189