참고문헌
- R.J. Qian and M.I. Sezan, "Video backgroundreplacement without a blue screen," InternationalConference on Image Processing (ICIP 99), Vol. 4, pp. 143-146, 1999.
- D. Hong and W. Woo, "A background subtractionfor a vision-based user interface,"Fourth Pacific Rim Conference on Multimedia(IEEE PCM), Vol. 1 pp. 263-267, 2003.
- M. Piccardi, "Background subtraction techniques:a review," IEEE SMC InternationalConference on Systems, Man, andCybernetics, Vol. 4, pp. 3099-3104, 2004.
- L. Li, W. Huang, I.Y. Gu and Q. Tian,"Statistical modeling of complex backgroundsfor foreground object detection," IEEE Trans. on Image Processing, Vol. 13, Issue 11, pp.1459-1472, 2004. https://doi.org/10.1109/TIP.2004.836169
- A.E. lgammal, D. Harwood and L. Davis,"Non-parametric model for background subtraction,"6th European Conference onComputer Vision, Part II, pp. 751-767, 2000.
- A Mittal and N. Paragiosm, "Motion-basedbackground subtraction using adaptive kerneldensity estimation," IEEE Computer SocietyConference on Computer Vision and PatternRecognition (CVPH '04), Vol. 2, pp. 302-309,2004.
- K. Kim, T. Chalidabhongse, D. Harwood andL. Davis, "Heal-time foreground-backgroundsegmentation using codebook model," Real Time Imaging, Vol. 11, Issue 3, pp. 172-185,2005. https://doi.org/10.1016/j.rti.2004.12.004
- M. Harville, "A framework for high-levelfeedback to adaptive, per-pixel, mixture-of-Gaussianbackground models," 7th EuropeanConference on Computer Vision, Vol. 3, pp.543-60, 2002.
- L. Greengard and J. Strain, "The fast Gausstransform," SIAM Journal on Scientific Computing, Vol. 2, Issue 1, pp. 79-94, 1991.
- L. Baoxin and M.I. Sezan, "Adaptive videobackground replacement," Proc. IEEEInternational Conference on Multimedia andExpo, pp. 269-272, 2001.
- Y.S. Raja, J. Mckenna and S. Gong,"Segmentation and tracking using colourmixture models," Asian Conference onComputer Vision, Vol. 1, pp, 607-614, 1998.
- 권혁종, 배상근, 김병국, “스테레오 CCD 카메라를 이용한 이동체의 실시간 3차원 위치추적” 한국GIS학회지, 13권, 2호, pp.129-138, 2005.
- B. Bhanu, L. Sungkee and J. Ming, "Adaptiveimage segmentation using a genetic algorithm,"IEEE Trans. on Systems, Man and Cybernetics, Vol. 25, No. 12, pp. 1543-1567,1995. https://doi.org/10.1109/21.478442
- L. Garcia-Perez, M.C. Garcia-Alegre, J.Marchant and T. Hague, "Dynamic thresholdselection for image segmentation of naturalstructures based upon a performance criterion,"3rd European Conference on PrecisionAgriculture (3ECPA), pp. 193-198, 2001.
- P.K. Sahoo, A.A. Farag and Y.P. Yeap,"Threshold selection based on histogrammodeling," IEEE International Conference onMan and Cybernetics, Vol. 1, pp. 351-356,1992.
- 이창수, 지정규, “멀티미디어 서비스를 위한 동영상 이미지의 특징정보 분석 시스템에 관한 연구,” 한국데이타베이스학회, 9권, 3호, pp. 1-12,2002. (RGB)
- D.E. Goldberg, "Applications of genetic-basedmachine learning," Chap. 7 in GeneticAlgorithms In Search, Optimization &Machine Learning, Addison WesleyPublishing, pp. 261-307, 1989.
- B. Bhanu, "Automatic target recognition: stateof the art survey," IEEE. Trans. on Aerospace and Electronic Systems, Vol.AES-22, pp. 364-379, 1986. https://doi.org/10.1109/TAES.1986.310772
- K. Ma and H. Wang, "Region-based non-parametricoptical flow segmentation withpre-clustering and post-clustering," IEEEInternational Conference on Multimedia andExpo (ICME), Vol. 2, pp. 201-204, 2002.
- 강동중, 하종은, “Visual C++을 이용한 디지털 영상처리,” 사이텍미디어, pp. 257-259, 2003.
- J. E. Baker, "Adaptive selection methods forgenetic algorithm," First InternationalConference on Genetic Algorithms andApplications, Their Applicat., pp. 101-111,1985.
- K. Toyama, J. Krumm, B. Brumitt and B.Meyers, "Wallflower: principles and practiceof background maintenance," 7th InternationalConference on Computer Vision, pp.255-261, 1999.