Silk Protein as a Fascinating Biomedical Polymer: Structural Fundamentals and Applications

  • Ki, Chang-Seok (Department of Biosystems and Biomaterials Sciences and Engineering, Seoul National University, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Young-Hwan (Department of Biosystems and Biomaterials Sciences and Engineering, Seoul National University, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • 발행 : 2009.12.25

초록

Silk is a textile material, as well as one of the oldest biomaterials. However, the recent progress of biomedical science and technology has led to the replacement of silk by various biomaterials based on synthetic polymers. Despite the wide variety of biomaterials available, these materials suffer certain limitations that prevent them from meeting the various demands of the medical field. Therefore, silk continues to attract considerable interest as a promising biomaterial. This paper explains the fundamentals of silk protein, and reviews the many applications of silk biomedical polymers.

키워드

참고문헌

  1. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999) https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  2. K. Inouye, M. Kurokawa, S. Nishikawa, and M. Tsukada, J. Biochem. Bioph. Meth., 37, 159 (1998) https://doi.org/10.1016/S0165-022X(98)00024-4
  3. N. Minoura, S. I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Bioph. Res. Co., 208, 511 (1995) https://doi.org/10.1006/bbrc.1995.1368
  4. H. Oh, J. Y. Lee, A. Kim, C. S. Ki, J. W. Kim, Y. H. Park, and K. H. Lee, Fiber. Polym., 8, 470 (2007) https://doi.org/10.1007/BF02875867
  5. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003) https://doi.org/10.1016/S0142-9612(02)00353-8
  6. Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 24, 6064 (2006)
  7. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007) https://doi.org/10.1016/j.progpolymsci.2007.05.013
  8. M. Fini, A. Motta, P. Torricelli, G. Glavaresi, N. N. Aldini, M. Tschon, R. Giardino, and C. Migliaresi, Biomaterials, 26, 3527 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.040
  9. D. H. Roh, S. Y. Kang, J. Y. Kim, Y. B. Kwon, H. Y. Kweon, K. G. Lee, Y. H. Park, R. M. Baek, C. Y. Heo, J. Choe, and J. H. Lee, J. Mater. Sci. Mater. M., 17, 547 (2006) https://doi.org/10.1007/s10856-006-8938-y
  10. J. Moreau, J. S. Chen, D. Kaplan, and G. Altman, Tissue Eng., 12, 2905 (2006) https://doi.org/10.1089/ten.2006.12.2905
  11. J. E. Moreau, D. S. Bramono, R. L. Horan, D. L. Kaplan, and G. H. Altman, Tissue Eng., 14, 1161 (2008) https://doi.org/10.1089/ten.tea.2007.0147
  12. R. Nazarov, H. J. Jin, and D. L. Kaplan, Biomacromolecules, 5, 718 (2004) https://doi.org/10.1021/bm034327e
  13. Y. Yang, F. Ding, H. Wu, W. Hu, W. Liu, H. Liu, and X. Gu, Biomaterials, 28, 5526 (2007) https://doi.org/10.1016/j.biomaterials.2007.09.001
  14. H. B. Fan, H. F. Liu, E. J. W. Wong, S. L. Toh, and J. C. H. Goh, Biomaterials, 29, 3324 (2008) https://doi.org/10.1016/j.biomaterials.2008.04.012
  15. C. M. Li, H. J. Jin, G. D. Botsaris, and D. L. Kaplan, Abstracts of Papers of the American Chemical Society, 226, U498 (2003)
  16. C. S. Ki, E. H. Gang, I. C. Um, and Y. H. Park, J. Membrane Sci., 302, 20 (2007) https://doi.org/10.1016/j.memsci.2007.06.003
  17. H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003) https://doi.org/10.1038/nature01809
  18. S. W. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 6, 2563 (2005) https://doi.org/10.1021/bm050294m
  19. Z. Z. Shao and F. Vollrath, Nature, 418, 741 (2002) https://doi.org/10.1038/418741a
  20. C. Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin, Proteins, 44, 119 (2001) https://doi.org/10.1002/prot.1078
  21. L. F. Drummy, B. L. Farmer, and R. R. Naik, Soft Matter, 3, 877 (2007) https://doi.org/10.1039/b701220a
  22. C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. G. Li, Nucleic Acids Res., 28, 2413 (2000) https://doi.org/10.1093/nar/28.12.2413
  23. Y. Takasu, H. Yamada, and K. Tsubouchi, Biosci. Biotech. Bioch., 66, 2715 (2002) https://doi.org/10.1271/bbb.66.2715
  24. K. H. Lee, Macromol. Rapid Comm., 25, 1792 (2004) https://doi.org/10.1002/marc.200400333
  25. J. Magoshi, Y. Magoshi, M. A. Becker, and S. Nakamura, Abstracts of Papers of the American Chemical Society, 212, 53 (1996)
  26. J. Magoshi, Y. Magoshi, and S. Nakamura, Appl. Polym. Symp., 41, 187 (1985)
  27. G. Y. Li, P. Zhou, Z. Z. Shao, X. Xie, X. Chen, H. H. Wang, L. J. Chunyu, and T. Y. Yu, Eur. J. Biochem., 268, 6600 (2001) https://doi.org/10.1046/j.0014-2956.2001.02614.x
  28. J. Magoshi, Y. Magoshi, and S. Nakamura, Polym. Comm., 26, 60 (1985)
  29. P. Zhou, X. Xie, D. P. Knight, X. H. Zong, F. Deng, and W. H. Yao, Biochemistry, 43, 11302 (2004) https://doi.org/10.1021/bi049344i
  30. J. Magoshi, Y. Magoshi, M. Kato, M. A. Becker, H. Zhang, and S. Nakamura, Abstracts of Papers of the American Chemical Society, 217, U469 (1999)
  31. J. Magoshi, Y. Magoshi, T. Tanaka, S. Inoue, M. Kobayashi, Tsuda H, M. A. Becker, H. Zhang, and S. Nakamura, Abstracts of Papers of the American Chemical Society, 221, U575 (2001)
  32. A. Matsumoto, J. Chen, A. L. Collette, U. J. Kim, G. H. Altman, P. Cebe, and D. L. Kaplan, J. Phys. Chem. B, 110, 21630 (2006) https://doi.org/10.1021/jp056350v
  33. T. Tanaka, J. Magoshi, Y. Magoshi, S. Inoue, M. Kobayashi, H. Tsuda, and S. Nakamura, Abstracts of Papers of the American Chemical Society, 222, U251 (2001)
  34. T. Huang, P. Ren, and B. Huo, J. Appl. Polym. Sci., 106, 4054 (2007) https://doi.org/10.1002/app.26591
  35. M. Rossle, P. Panine, V. S. Urban, and C. Riekel, Biopolymers, 74, 316 (2004) https://doi.org/10.1002/bip.20083
  36. A. Ochi, K. S. Hossain, J. Magoshi, and N. Nemoto, Biomacromolecules, 3, 1187 (2002) https://doi.org/10.1021/bm020056g
  37. K. Ohgo, F. Bagusat, T. Asakura, and U. Scheler, J. Am. Chem. Soc., 130, 4182 (2008) https://doi.org/10.1021/ja710011d
  38. T. Asakura, M. Hamada, Y. Nakazawa, S. W. Ha, and D. P. Knight, Biomacromolecules, 7, 627 (2006) https://doi.org/10.1021/bm050863q
  39. T. Asakura, K. Suita, T. Kameda, S. Afonin, and A. S. Ulrich, Magn. Reson. Chem., 42, 258 (2004) https://doi.org/10.1002/mrc.1337
  40. T. Asakura, M. Y. Yang, T. Kawase, and Y. Nakazawa, Macromolecules, 38, 3356 (2005) https://doi.org/10.1021/ma047660z
  41. Y. Nakazawa and T. Asakura, Macromolecules, 35, 2393 (2002) https://doi.org/10.1021/ma011999t
  42. S. J. He, R. Valluzzi, and S. P. Gido, Inter. J. Biol. Macromol., 24, 187 (1999) https://doi.org/10.1016/S0141-8130(99)00004-5
  43. M. Tsukada and K. Hirabayashi, Sen-i Gakkaishi, 39, 265 (1983) https://doi.org/10.2115/fiber.39.6_T265
  44. H. Saito, R. Tabeta, T. Asakura, Y. Iwanaga, A. Shoji, T. Ozaki, and I. Ando, Macromolecules, 17, 1405 (1984) https://doi.org/10.1021/ma00137a018
  45. M. Tsukada, Y. Gotoh, and N. Minoura, J. Sericulture Sci. Jpn., 59, 325 (1990)
  46. Y. Shen, M. A. Johnson, and D. C. Martin, Macromolecules, 31, 8857 (1998) https://doi.org/10.1021/ma980281j
  47. T. Asakura, T. Yamane, Y. Nakazawa, T. Kameda, and K. Ando, Biopolymers, 58, 521 (2001) https://doi.org/10.1002/1097-0282(20010415)58:5<521::AID-BIP1027>3.0.CO;2-T
  48. I. C. Um, H. Y. Kweon, K. G. Lee, and Y. H. Park, Inter. J. Biol. Macromol., 33, 203 (2003) https://doi.org/10.1016/j.ijbiomac.2003.08.004
  49. X. G. Li, L. Y. Wu, M. R. Huang, H. L. Shao, and X. C. Hu, Biopolymers, 89, 497 (2008) https://doi.org/10.1002/bip.20905
  50. Y. H. Yang, Z. Z. Shao, X. Chen, and P. Zhou, Biomacromolecules, 5, 773 (2004) https://doi.org/10.1021/bm0343848
  51. X. Hu, D. Kaplan, and P. Cebe, Macromolecules, 41, 3939 (2008) https://doi.org/10.1021/ma071551d
  52. Y. Takahashi, M. Gehoh, and K. Yuzuriha, Inter. J. Biol. Macromol., 24, 127 (1999) https://doi.org/10.1016/S0141-8130(98)00080-4
  53. B. M. Min, L. Jeong, K. Y. Lee, and W. H. Park, Macromol. Biosci., 6, 285 (2006) https://doi.org/10.1002/mabi.200500246
  54. X. Chen, D. P. Knight, Z. Z. Shao, and F. Vollrath, Polymer, 42, 9969 (2001) https://doi.org/10.1016/S0032-3861(01)00541-9
  55. C. Holland, A. E. Terry, D. Porter, and F. Vollrath, Nat. Mater., 5, 870 (2006) https://doi.org/10.1038/nmat1762
  56. A. Raghu, R. Somashekar, and S. Ananthamurthy, J. Polym. Sci. Polym. Phys., 45, 2555 (2007) https://doi.org/10.1002/polb.21252
  57. C. S. Ki, J. W. Kim, H. J. Oh, K. H. Lee, and Y. H. Park, Inter. J. Biol. Macromol., 41, 346 (2007) https://doi.org/10.1016/j.ijbiomac.2007.05.005
  58. C. S. Ki, I. C. Um, and Y. H. Park, Polymer, 50, 4618 (2009) https://doi.org/10.1016/j.polymer.2009.02.017
  59. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001) https://doi.org/10.1002/app.1172
  60. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.045
  61. K. E. Park, S. Y. Jung, S. J. Lee, B. M. Min, and W. H. Park, Inter. J. Biol. Macromol., 38, 165 (2006) https://doi.org/10.1016/j.ijbiomac.2006.03.003
  62. S. Min, T. Nakamura, A. Teramoto, and K. Abe, Sen-i Gakkaishi, 54, 270 (1998) https://doi.org/10.2115/fiber.54.5_270
  63. G. D. Kang, K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park, Macromol. Res., 12, 534 (2004) https://doi.org/10.1007/BF03218439
  64. X. Wang, X. Zhang, J. Cstellot, I. Herman, M. Iafrati, and D. L. Kaplan, Biomaterials, 29, 894 (2008) https://doi.org/10.1016/j.biomaterials.2007.10.055
  65. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007) https://doi.org/10.1016/j.progpolymsci.2007.05.013
  66. J. S. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, and D. L. Kaplan, J. Biomed. Mater. Res. A, 67A, 559 (2003) https://doi.org/10.1002/jbm.a.10120
  67. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  68. H. J. Jin, J. S. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004) https://doi.org/10.1016/S0142-9612(03)00609-4
  69. K. Yamamoto, N. Tomita, Y. Fukuda, S. Suzuki, N. Igarashi, T. Suguro, and Y. Tamada, Biomaterials, 28, 1838 (2007) https://doi.org/10.1016/j.biomaterials.2006.11.045
  70. D. Marolt, A. Augst, L. E. Freed, C. Vepari, R. Fajardo, N. Patel, M. Gray, M. Farley, D. Kaplan, and G. Vunjak-Novakovic, Biomaterials, 27, 6138 (2006) https://doi.org/10.1016/j.biomaterials.2006.07.015
  71. M. Simonet, O. D. Schneider, P. Neuenschwander, and W. J. Stark, Polym. Eng. Sci., 47, 2020 (2007) https://doi.org/10.1002/pen.20914
  72. H. J. Kim, U. J. Kim, G. G. Leisk, C. Bayan, I. Georgakoudi, and D. L. Kaplan, Macromol. Biosci., 7, 643 (2007) https://doi.org/10.1002/mabi.200700030
  73. L. Meinel, R. Fajardo, S. Hofmann, R. Langer, J. Chen, B. Snyder, G. Vunjak-Novakovic, and D. Kaplan, Bone, 37, 688 (2005) https://doi.org/10.1016/j.bone.2005.06.010
  74. H. J. Kim, U. J. Kim, H. S. Kim, C. Li, M. Wada, G. G. Leisk, and D. L. Kaplan, Bone, 42, 1226 (2008) https://doi.org/10.1016/j.bone.2008.02.007
  75. J. R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J. M. Gimble, and D. L. Kaplan, Biomaterials, 28, 5280 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.017
  76. G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, Biomaterials, 23, 4131 (2002) https://doi.org/10.1016/S0142-9612(02)00156-4
  77. J. E. Moreau, J. S. Chen, R. L. Horan, D. L. Kaplan, and G. H. Altman, Tissue Eng., 11, 1887 (2005) https://doi.org/10.1089/ten.2005.11.1887
  78. M. Lovett, C. Cannizzaro, L. Daheron, B. Messmer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 28, 5271 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.008
  79. M. L. Lovett, C. M. Cannizzaro, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 29, 4650 (2008) https://doi.org/10.1016/j.biomaterials.2008.08.025
  80. X. Zhang, C. B. Baughman, and D. L. Kaplan, Biomaterials, 29, 2217 (2008) https://doi.org/10.1016/j.biomaterials.2008.01.022
  81. B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 30, 1299 (2009) https://doi.org/10.1016/j.biomaterials.2008.11.018
  82. A. J. Meinel, K. E. Kubow, E. Klotzsch, M. Garcia-Fuentes, M. L. Smith, V. Vogel, H. P. Merkle, and L. Meinel, Biomaterials, 30, 3058 (2009) https://doi.org/10.1016/j.biomaterials.2009.01.054
  83. C. S. Ki, J. W. Kim, J. H. Hyun, K. H. Lee, M. Hattori, D. K. Rah, and Y. H. Park, J. Appl. Polym. Sci., 106, 3922 (2007) https://doi.org/10.1002/app.26914
  84. C. S. Ki, S. Y. Park, H. J. Kim, H. M. Jung, K. M. Woo, J. W. Lee, and Y. H. Park, Biotechnol. Lett., 30, 405 (2008) https://doi.org/10.1007/s10529-007-9581-5
  85. H. S. Baek, Y. H. Park, C. S. Ki, J. C. Park, and D. K. Rah, Surf. Coat. Tech., 202, 5794 (2008) https://doi.org/10.1016/j.surfcoat.2008.06.154
  86. J. E. Moreau, J. S. Chen, D. S. Bramono, V. Volloch, H. Chernoff, G. Vunjak-Novakovic, J. C. Richmond, D. L. Kaplan, and G. H. Altman, J. Orthop. Res., 23, 164 (2005) https://doi.org/10.1016/j.orthres.2004.05.004