A Study on Mathematical Creativity Task

수학적 창의성 과제에 대한 고찰

  • Published : 2009.11.30

Abstract

This study reviewed the notion and strategies of mathematical creativity from two point of view, mathematics and creativity. By these reviews, the spectrum was presented as frame of mathematical creativity task. Creativity and mathematics were seen as polar opposites and mathematical creativity task fit clearly at various points in this spectrum. Some focused on the quantity of ideas and originality from creative point of view. On the other hand, some focused on reasoning, insight, and generalization from mathematical point of view. The tasks on the spectrum were served as the vehicle of mathematical creativity and mathematics classroom. Therefore, there were some specific suggestions that mathematics classroom could be made a place where students and teachers would be able to foster their mathematical creativity.

Keywords

References

  1. 권오남. 김정효 (2000). 창의성 문제해결력 중심의 수학교육과정 적용 및 효과 분석. 한국수학교육학회지 시리즈 A <수학교육> 39(2), pp.81-100.
  2. 권오남. 박정숙. 조영미. 박지현. 김영실 (2002). 개방형 문제 중심의 수학적 창의력 신장을 위한 프로그램 개발 연구, 한국학술진흥재단 지원 교과교육공동연구.
  3. 김부윤. 이지성 (2005). 수학적 창의성이 발현될 수 있는 과제 유형. 수학교육학논총 28, pp.95-108. 서울:대한수학교육학회.
  4. 김홍원. 김명숙. 방승진. 황동주 (1997). 수학 영재 판별도구 개발 연구(II) - 검사 제작편. 한국교육개발원 연구보고 CR 97-50. 한국교육개발원.
  5. 도종훈 (2006). 중학교 기하 영역에서의 수학적 창의성 교육 연구, 서울대학교 대학원 박사학위논문.
  6. 송상헌 (1998). 수학 영재성 측정과 판별에 관한 연구, 서울대학교 대학원 박사학위논문.
  7. 이강섭. 황동주 (2003). 일반 창의성(도형)과 수학 창의성과의 관련 연구 : TTCT, Figural A와 MCPSAT; A를 바탕으로. 한국수학교육학회지 시리즈 A <수학교육> 42(1), pp.1-9.
  8. 이대현. 박배훈 (1998). 수학적 창의력에 대한 소고, 대한수학교육학회논문집 8(2), pp.679-690.
  9. 정예순 (2003). 중학생 성격유형과 수학적 창의성의 비교, 한국교원대학교 대학원 석사학위논문.
  10. 薺藤昇 (1998). 創造性創出過程のモデルの構築とその實踐. 日本敎科敎育學會誌 21(2), pp.19-27.
  11. 薺藤昇. 秋田美代 (2000). 數學における創造性テストと創造性態度との關係. 全國數學敎育學會誌. 數學敎育學硏究 6, pp.35-48.
  12. Balka, D. S. (1974). Creative ability in mathematics, Arithmetic Teacher 21, pp.633-636.
  13. Becker, J. P., & Shimada, S. (Eds.) (1997). The Open-Ended Approach : A New Proposal for Teaching Mathematics, VA: National Council of Teachers of Mathematics.
  14. Ervynck, G. (1991). Mathematical Creativity, In D. Tall (Ed.), (pp.42-53). Advanced Mathematical Thinking, Netherlands : Kluwer Academic Publishers.
  15. Haylock, D. W. (1984). Aspects of Mathematical Creativity in Children Ages 11-12, Ph. D. Thesis in Univ. of London, UK.
  16. Haylock, D. W. (1985). Conflicts in the assessment and encouragement of mathematical creativity in schoolchildren, International Journal of Mathematical Education and Technology 16(4), pp.547-553. https://doi.org/10.1080/0020739850160412
  17. Haylock, D. W. (1987). A Framework for Assessing Mathematical Creativity in Schoolchildren, Educational Studies in Mathematics 18, pp.59-74. https://doi.org/10.1007/BF00367914
  18. Haylock, D. W.(1997). Recognising Mathematical Creativity in Schoolchildren, Zentralblatt fur Didaktik der Mathematik 27(3), pp.68-74.
  19. Jensen, L. R. (1973). The Relationships among Mathematical Creativity, Numerical Aptitude and Mathematical Achievement, Doctoral Dissertation, Univ. of Texas, Austin, TX.
  20. Krulik, S., & Rudnick, J. A.(1999). Innovative Tasks to Improve Critical- and Creative-Thinking Skills, In Lee V. Stiff & Frances R. Curcio (Eds.), Developing Mathematical Reasoning in Grades K-12, VA : National Council of Teachers of Mathematics, pp.138-145.
  21. Krutetskii, V. A. (1969). Mathematical Aptitudes, In J. Kilpatrick and I. Wirszup (Eds.), Soviet Studies in the Psychology of Learning and Teaching Mathematics, Volume II, Chicago : The Univ. of Chicago Press, pp.113-128.
  22. Krutetskii, V. A.(1976). The Psychology of Mathematical Abilities in Schoolchildren, Chicago : The Univ. of Chicago Press.
  23. Lee, K. S, Hwang, D. J., & Seo, J. J. (2003). A Development of the Test for Mathematical Creative Problem Solving Ability, Journal of the Korea Society of Mathematical Education Series D : Research in Mathematical Education 7(3), pp.163-189.
  24. Meissner, E (2000). Creativity in Mathematics Education, Paper presented at the web site of Mathematics Education Study Group (August 7-8, 2000 in Tokyo, Japan), http://www.nHthl.uni-muenster.de/didaktik/u/meissne/WWW/creativity.htm
  25. Millington, J. (2003). Mathematical Snacks : A Collection of Interesting Ideas to Fill Those Spare Moments, Norfolk : Tarquin Publications.
  26. Pehkonen, E. (1997). The State-of-Art in Mathematical Creativity, Zentralblatt fur Didaktik der Mathematik 29(3), pp.63-67. https://doi.org/10.1007/s11858-997-0001-z
  27. Schoenfeld, A. H. (2002). Research Methods in (Mathematics) Education, In Lyn D. English, Maria Bartolini Bussi, Graham A. Jones, Richard A. Lesh, Dina Tirosh (eds.), Handbook of International Research in Mathematics Education NJ : Lawrence Erlbaum Associates, pp.435-488.
  28. Sheffield, L J. (1999). When the Problem is Solved, the Creativity Has Just Begun, Paper presented at the web site of Creativity and Mathematics Education (July 15-19, 1999 in Muenster, Germany), http://wwwmathl.uni-muenster.de/didaktik/u/meissne/WWW/update.htm
  29. Sheffield, L J. (2005). Using Creativity Techniques to Add Depth and Complexity to the Mathematics Curricula. Paper presented at the web site of EARCOME 3 Symposium 1 : Creativity(August 7-12, 2005 in Shanghai, China), http://euler.math.ecnu.edu.cn/earcome3/Symposiums.htm
  30. Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing, Zentralblatt fur Didaktik der Mathematik 29(3), pp.75-80. https://doi.org/10.1007/s11858-997-0003-x