DOI QR코드

DOI QR Code

MLCA와 CAT를 이용한 새로운 영상 암호화 방법

A Novel Image Encryption using MLCA and CAT

  • 박영일 (광운대학교 전자공학과, 3DRC) ;
  • 조성진 (부경대학교 수리과학부) ;
  • 김석태 (부경대학교 전자컴퓨터정보통신공학부)
  • 발행 : 2009.10.31

초록

본 논문에서는 MLCA (Maximum Length Cellular Automata)와 CAT (Cellular Automata Transform)을 이용한 새로운 영상 암호화 방법을 제안한다. 먼저 Wolfram 규칙을 선택하여 규칙행렬을 구성하고 규칙행렬에 의하여 MLCA의 상태 전이행렬 T를 만든 후 암호화 하려는 영상의 픽셀 위치에 따라 전이행렬을 곱하여 픽셀의 값을 변환한다. 다음 게이트웨이 값의 설정에 따라 2D CAT 기저함수를 생성하여 MLCA 암호화한 영상을 CAT 암호화를 한다. 실험결과와 안정성 분석을 통하여 제안한 방법은 높은 암호화 수준과 무손실 암호화의 성질을 가졌음을 확인한다.

In this paper, we propose a novel Image Encryption using MLCA (Maximum Length Cellular Automata) and CAT (Cellular Automata Transform). Firstly, we use the Wolfram rule matrix to generate MLCA state transition matrix T. Then the state transition matrix T changes pixel value of original image according to pixel position. Next, we obtain Gateway Values to generate 2D CAT basis function. Lastly, the basis function encrypts the MLCA encrypted image into cellular automata space. The experimental results and security analysis show that the proposed method guarantees better security and non-lossy encryption.

키워드

참고문헌

  1. F. Pichler, J. Scharinger, "Ciphering by Bernoulli shifts in finite Abelian groups", Contributions to general algebra. Proc. Linz-conference, pp. 465-476, 1994
  2. J. Scharinger, "Fast encryption of image data using chaotic Kolmogorov Flows", J Electron Image, Vol.2, No.2, pp. 318-325, 1998
  3. G. Chen, Y. Mao, C. Chui, "Symmetric image encryption scheme based on 3D chaotic cat maps", Chaos, Solitons & Fractals, Vol.21, No.3, pp.749-761,2004 https://doi.org/10.1016/j.chaos.2003.12.022
  4. S. Lian, "Efficient image or video encryption based on spatiotemporal chaos system", Chaos, Solitons & Fractals, Vol.34, pp. 851-859, 2007 https://doi.org/10.1016/j.chaos.2006.03.120
  5. J. Von Neumann, "The theory of self-reproducing Automata", A. W. Burksed. Univ. of lllinois Press, UrbanaandLondon, 1966
  6. J. Von Neumann, "The General and Logical Theory of Automata", Collected Works, A. H. Taub, Vol. 5, pp. 288, 1963
  7. S. Wolfram, "Statical Mechanic of Cellular Automata", Review of Modern Physiscs, Vol. 55, pp. 601-644, 1983 https://doi.org/10.1103/RevModPhys.55.601
  8. S. Wolfram, "Computational Theory of Cellular Automata in Cellular Automata and Complexity", Addison-Wesley, pp. 150-202, 1984
  9. M. Skolnick, S. Kim, and R. O'Bara, "Morphological algorithms for computing nonplanar point neighborhoods on cellular automata", in Proc. 2ndInt. conf. Comput. Vision, pp.106-111, 1988
  10. G. Hernandez and H. J. Herrmann, "Cellular automata for elementary image enhancement", Graphical Models and Image Processing, Vol. 58, No.1, pp. 82-89, 1996 https://doi.org/10.1006/gmip.1996.0006
  11. 박영일, 김석태, "다 해상도 특성을 갖는 2D 셀룰러 오토마타 변환을 이용한 디지털 워터마킹", 한국통신학회, Vol.34, pp.105-112, 2009
  12. Yongri Piao, Seoktae Kim, Sungjin Cho, "Two-Dimensional Cellular Automata Transform for a Novel Edge Detection", Computability in Europe 2008, Logic and Theory of Algorithms, pp. 367-376, Greece, June 2008
  13. Olu Lafe, "Cellular Automata Transforms: Theory and Application in Multimedia Compression, Encryption, and Modeling", Kluwer Academic Publishers, Bostonj Dordrecht/London, 2000