DOI QR코드

DOI QR Code

A GF($2^{163}$) Scalar Multiplier for Elliptic Curve Cryptography for Smartcard Security

스마트카드 보안용 타원곡선 암호를 위한 GF($2^{163}$) 스칼라 곱셈기

  • 정상혁 (금오공과대학교 전자공학부) ;
  • 신경욱 (금오공과대학교 전자공학부)
  • Published : 2009.10.31

Abstract

This paper describes a scalar multiplier for Elliptic curve cryptography for smart card security. The scaler multiplier has 163-bits key size which supports the specifications of smart card standard. To reduce the computational complexity of scala multiplication on finite field, the non-adjacent format (NAF) conversion algorithm which is based on complementary recoding is adopted. The scalar multiplier core synthesized with a 0.35-${\mu}m$ CMOS cell library has 32,768 gates and can operate up to 150-MHz@3.3-V. It can be used in hardware design of Elliptic curve cryptography processor for smartcard security.

스마트카드 보안용 타원곡선 암호를 위한 스칼라 곱셈기를 설계하였다. 스마트카드 표준에 기술된 163-비트의 키 길이를 지원하며, 유한체 (finite field) 상에서 스칼라 곱셈의 연산량을 줄이기 위해 complementary receding 방식을 적용한 Non-Adjacent Format (NAF) 변환 알고리듬을 적용하여 설계되었다. 설계된 스칼라 곱셈기 코어는 0.35-${\mu}m$ CMOS 셀 라이브러리로 합성하여 32,768 게이트로 구현되었으며, 150-MHz@3.3-V로 동작한다. 설계된 스칼라 승산기는 스마트카드용 타원곡선 암호 알고리듬의 전용 하드웨어 구현을 위한 IP로 사용될 수 있다.

Keywords

References

  1. Certicom research, The Elliptic Curve Cryptosystem, Certicom, April 1997
  2. C.D. Walter, "Systolic modular multipli- cation", IEEE Trans. on Computers, vol. 42, no. 3, pp. 376-378, Mar., 1993 https://doi.org/10.1109/12.210181
  3. A. Menezes, Elliptic curve pubic key cryptosystem, Kluwer Academic Publishers, 1993
  4. R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, "Fast key exchange with elliptic curve systems", Advances in Cryp- tology CRYPTO 95, pp. 43-56, 1995
  5. P. Balasubramaniam and E. Karthikeyan, "Elliptic curve scalar multiplication algorithm using complementary recoding", Elsevier, 2007
  6. C.C Chang, Y.T. Kuo, and C.H. Lin, "Fast algorithm for common-multiplicand multipli- cation and exponentiation by performing complements", Proc. of the 17th Int. Conf. on Advanced Information Networking and Application (AINA '03), pp. 807-811, 2003
  7. A.D. Booth, "A signed binary multiplication technique", Journal of Applied Mathematics 4, pp. 236-240,1951
  8. K. Okeya, "Signed binary representations revisited", Proceedings of CRYPTO '04, pp. 123-139, 2004
  9. S.K. Jain, L. Song and K.K. Parhi, "Efficient Semi-Systolic Architectures for Finite Field Arithmetic", IEEE Trans. VLSI Syst., vol. 6, no. 1, pp. 101-113, Mar. 1998 https://doi.org/10.1109/92.661252
  10. lH. Guo and C.L. Wang, "Systolic Array Implementation of Euclid's Algorithm for Inversion and Division in GF($2^{m}$)", IEEE Trans. Computers., vol. 47, no. 10, pp. 1161-1167, Oct. 1998 https://doi.org/10.1109/12.729800
  11. 김창훈, 권순학, 홍준표, 유기영, "타원곡석 암호프로세서의 재구성형 하드웨어 구현을 위한 CF($2^{m}$) 상의 새로운 연산기", 정보과학회 논문지, 제31권 제8호, pp.453-464, 2004
  12. G. Orlando, C. Paar, "A Super-Serial Galois Fields Multiplier for FPGAs and its Application to Public-Key Algoritlnns", Pro. of 7th Annual IEEE Symp. on Field-Pro- grammable Custom Computing Machines, pp. 232-239, 1999
  13. 최용재, 김호원, 김무섭, 박영수, "IC 카드를 위한 polynomial 기반의 타원곡선 암호시스템 연산기 설계", 대한전자공학회 하게종합학술대회 논문집, 제24권 제1호, pp.305-308, 2001
  14. 문상국, "소프트웨어/하드웨어 최적화된 타원곡선 유한체 연산 알고리즘의 개발과 이를 이용한 고성능 정보보호 SoC설계", 한국해양정보통신학회 논문지, 제13권 제2호, pp.293-298, 2009