DOI QR코드

DOI QR Code

SIMULATION OF HIGH BURNUP STRUCTURE IN UO2 USING POTTS MODEL

  • 발행 : 2009.10.31

초록

The evolution of a high burnup structure (HBS) in a light water reactor (LWR) $UO_2$ fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the $UO_2$ matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels.

키워드

참고문헌

  1. Y. H. Koo, B. H. Lee, J. Y. Oh and K. W. Song, “Conservative Width of High-Burnup Structure in Light Water Reactor $UO_{2}$ Fuel as a Function of Pellet Average Burnup”, Nuclear Technology, 164, 337 (2008) https://doi.org/10.13182/NT08-A4031
  2. J. Spino, K. Vennix, and M. Coquerelle, “Detailed characterization of the rim microstructure in PWR fuels in the burn-up range 40-67 GWd/tM”, J. Nucl. Mater., 231, 179 (1996) https://doi.org/10.1016/0022-3115(96)00374-1
  3. Y. H. Koo, J. Y. Oh, B. H. Lee, J. S. Cheon, H. K. Joo, and D. S. Sohn, “Simulation of Pore Interlinkage in the Rim Region of High Burnup UO2 Fuel”, J. Kor. Nucl. Soc., 35(1), 55 (2003)
  4. M. E. Cunningham, M. D. Freshley and D. D. Lanning, “Development and characteristics of the rim region in high burnup UO2 fuel pellets”, J. Nucl. Mater., 188, 19 (1992) https://doi.org/10.1016/0022-3115(92)90449-U
  5. C. T. Walker, T. Kameyama, S. Kitajima, and M. Kinoshita, “Concerning the microstructure changes that occur at the surface of UO2 pellets on irradiation to high burnup”, J. Nucl. Mater., 188, 73 (1992) https://doi.org/10.1016/0022-3115(92)90456-U
  6. T. Sonoda, M. Kinoshita, I. L. F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V. V. Rondinella, and Hj. Matzke, “Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel”, Nucl. Inst. and Meth. in Phys. Res. B, 191, 622 (2002) https://doi.org/10.1016/S0168-583X(02)00622-5
  7. V. V. Likhanskii, O. V. Khoruzhii, A. A. Sorokin, “Physical Model Development for Prediction of Rim-layer Formation in UO2 Fuel”, Proc. Pellet-clad Interaction in Water Reactor Fuels, Aix-en-Provence, France, March 9-11, 2004
  8. M. Kinoshita, “Towards the mathematical model of rim structure formation”, J. Nucl. Mater., 248, 185 (1997) https://doi.org/10.1016/S0022-3115(97)00118-9
  9. J. Rest, “Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels”, J. Nucl. Mater., 349, 150 (2006) https://doi.org/10.1016/j.jnucmat.2005.10.007
  10. D. Baron, M. Kinoshita, P. Thevenin, R. Largenton, “Discussion about HBS Transformation in High Burn-up Fuels”, Nucl. Eng. and Tech., 41, 199 (2009) https://doi.org/10.5516/NET.2009.41.2.199
  11. D. Baron, B. Hermitte, J. P. Piron, “An Attempt to Simulate the Porosity Buildup in the Rim at High Burnup”, IAEA Technical Committee Meeting on Advances in Pellet Technology for Improved Performance at High Burnup, Tokyo, October 28 - November 1, 1996
  12. E. A. Holm and C. C. Battaile, “The Computer Simulation of Microstructural Evolution”, JOM, 53(9), 20 (2007) https://doi.org/10.1007/s11837-001-0063-2
  13. M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. S. Sahni, “Computer Simulation of Recrystallization- I. Kinetics”, Acta metal., 32(5), 783 (1984) https://doi.org/10.1016/0001-6160(84)90151-2
  14. V. Tikare and E. A. Holm, “Simulation of Grain Growth and Pore Migration in a Thermal Gradient”, J. Am. Ceram. Soc., 81(3), 480 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02365.x
  15. D. J. Srolovitz, G. S. Grest, M. P. Anderson, and A. D. Rollett, “Computer Simulation of Recrystallization- II. Heterogeneous Nucleation and Growth”, Acta metal., 36(8), 2115 (1988) https://doi.org/10.1016/0001-6160(88)90313-6
  16. A. D. Rollett, D. J. Srolovitz, M. P. Anderson, and R. D. Doherty, “Computer Simulation of Recrystallization- III. Influence of a Dispersion of Fine Particles”, Acta metal., 40(12), 3475 (1992) https://doi.org/10.1016/0956-7151(92)90062-J
  17. M. R. Dudek, J. -F. Gouyet, and M. Kolb, “Q+1 state Potts model of late stage sintering”, Surface Science, 401, 220 (1998) https://doi.org/10.1016/S0039-6028(97)01081-9
  18. K. Nogita and K. Une, “Radiation-induced microstructural change in high burnup UO2 fuel pellets”, Nucl. Inst. and Meth. in Phys. Res. B, 91, 301 (1994) https://doi.org/10.1016/0168-583X(94)96235-9
  19. R. O. A. Hall, M. J. Mortimer, and D. A. Mortimer, “Surface Energy Measurements on UO2 - a Critical Review”, J. Nucl. Mater., 148, 237 (1987) https://doi.org/10.1016/0022-3115(87)90017-1
  20. J. Spino, and D. Papaioannou, “Lattice parameter changes associated with the rim-structure formation in high burnup UO2 fuels by micro- X-ray diffraction”, J. Nucl. Mater., 281, 146 (2000) https://doi.org/10.1016/S0022-3115(00)00236-1
  21. J. Spino, A. D. Stalios, H. Santa Cruz, and D. Baron, “Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burn-up and temperature”, J. Nucl. Mater., 354, 66 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.095
  22. N. Lozano, L. Desgranges, D. Aymes, J.C. Niepce, “High magnification SEM observation for two types of granularity in a high burnup PWR fuel rim”, J. Nucl. Mater., 257, 78 (1998) https://doi.org/10.1016/S0022-3115(98)00056-7