DOI QR코드

DOI QR Code

Analysis of Multivariate-GARCH via DCC Modelling

DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용

  • Choi, S.M. (Department of Statistics, Sookmyung Women's University) ;
  • Hong, S.Y. (Department of Statistics, Sookmyung Women's University) ;
  • Choi, M.S. (Department of Statistics, Sookmyung Women's University) ;
  • Park, J.A. (Department of Statistics, Sookmyung Women's University) ;
  • Baek, J.S. (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University)
  • 최성미 (숙명여자대학교 통계학과) ;
  • 홍선영 (숙명여자대학교 통계학과) ;
  • 최문선 (숙명여자대학교 통계학과) ;
  • 박진아 (숙명여자대학교 통계학과) ;
  • 백지선 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과)
  • Published : 2009.10.31

Abstract

Conditional correlation between financial time series plays an important role in risk management, asset allocation and portfolio selection and therefore diverse efforts for modeling conditional correlations in multivariate-GARCH processes have been made in last two decades. In particular, CCC (cf. Bollerslev, 1990) and DCC(dynamic conditional correlation, cf. Engle, 2002) models have been commonly used since they are relatively parsimonious in the number of parameters involved. This article is concerned with DCC modeling for multivariate GARCH processes in comparison with CCC specification. Various multivariate financial time series are analysed to illustrate possible advantages of DCC over CCC modeling.

금융 시계열 자료들 간의 상관계수는 자산의 배분, 위험관리 그리고 포트폴리오의 선택에 있어서 중요한 역할을 한다. 이러한 상관계수들을 모형화하기 위해 단변량-GARCH 모형을 다변량-GARCH 모형으로 확장시킨 MGARCH류 모형들에 대한 많은 연구들이 진행되고 있다. 특히, CCC 모형 (Bollerslev, 1990)과 DCC 모형 (Engle, 2002)은 다른 모형들에 비해 추정해야 할 모수의 수가 작다는 이점으로 인해 분석에 널리 쓰이고 있다. 본 논문에서는 국내 주가자료에 대해 CCC 모형과 DCC 모형을 적합시킨 후, 각 모형들에 대한 VaR(value at risk)와 사후검증(back-testing), 결합예측영역(joint prediction region) 등을 통하여 두 모형의 예측 능력을 비교해 보고자 한다.

Keywords

References

  1. 송유진, 최문선, 황선영 (2008). 차원축소를 통한 시계열의 변동성 분석 및 응용, <한국 통계학회 논문집>, 15, 825-835 https://doi.org/10.5351/CKSS.2008.15.6.825
  2. 황선영, 박진아 (2005). VaR(Value at Risk) for Korean financial time sereis, <한국 데이터정보과학회지>, 16, 283-288
  3. 황선영, 최문선, 도종두 (2009). 사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석, <응용통계연구>, 22, 261-270 https://doi.org/10.5351/KJAS.2009.22.2.261
  4. Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey, Journal of Applied Econometrics, 21, 79-109 https://doi.org/10.1002/jae.842
  5. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  6. Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, The Review of Economics and Statistics, 72, 498-505 https://doi.org/10.2307/2109358
  7. Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1998). A capital asset pricing model with time-varying covariances, Journal of Political Economy, 96, 116-131 https://doi.org/10.1086/261527
  8. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
  9. Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 20, 339-350 https://doi.org/10.1198/073500102288618487
  10. Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH, Econometric Theory, 11, 122-150 https://doi.org/10.1017/S0266466600009063
  11. Tsay, R. S. (2005). Analysis of Financial Time Series, John Wiley & Sons, New York
  12. Tse, Y. K. and Tsui, A. K. C. (2002). A multivariate GARCH model with time-varying correlations, Journal of Business and Economic Statistics, 20, 351-362 https://doi.org/10.1198/073500102288618496

Cited by

  1. A recent overview on financial and special time series models vol.29, pp.1, 2016, https://doi.org/10.5351/KJAS.2016.29.1.001
  2. Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study vol.24, pp.4, 2011, https://doi.org/10.5351/KJAS.2011.24.4.597
  3. Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.821