탄소원을 공급한 폐금은광산 주변 논토양 내 중금속의 지구미생물학적 거동 연구

Geomicrobiological Behavior of Heavy Metals in Paddy Soil Near Abandoned Au-Ag Mine Supplied with Carbon Sources

  • 고명수 (광주과학기술원 환경공학과) ;
  • 이종운 (전남대학교 에너지자원공학과) ;
  • 박현성 (광해관리공단 기술연구센터) ;
  • 신중수 ((주)대우엔지니어링) ;
  • 방기문 ((주)대우엔지니어링) ;
  • 전효택 (서울대학교 에너지자원공학과) ;
  • 이진수 (광해관리공단 기술연구센터) ;
  • 김주용 (광주과학기술원 환경공학과)
  • Ko, M.S. (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, J.U. (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Park, H.S. (Technology Research Center, Mine Reclamation Corporation) ;
  • Shin, J.S. (Daewoo Engineering) ;
  • Bang, K.M. (Daewoo Engineering) ;
  • Chon, H.T. (Department of Energy Resources Engineering, Seoul National University) ;
  • Lee, J.S. (Technology Research Center, Mine Reclamation Corporation) ;
  • Kim, J.Y. (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 발행 : 2009.10.28

초록

중금속으로 오염된 폐금은광산 주변 논토양에 탄소원을 주입하였을 경우 토착미생물에 의한 중금속의 거동 변화를 실험적으로 확인하고, 미생물학적 황산염환원을 촉진하기 위하여 황산염을 주입하였을 경우의 지구화학적 변화를 관찰하였다. 혐기적 조건에서 오염 토양에 유산염과 포도당 둥의 탄소원을 공급하고 토착미생물을 접종한 후 약 100일 동안 반응시켰으며 반응 시작 후 60일이 경과하였을 때 황산염 250 mg/L를 인위적으로 주입하였다. 유산염을 공급하였을 때 실험 기간 중 pH는 7~8 내외를 유지하였으나 포도당을 공급한 경우에는 초기 24일까지 평균 4.8의 pH를 보이다 이후 7.6까지 증가하였다. 이러한 pH 차이는 포도당을 공급하였을 때 Fe와 대부분의 중금속이 유산염에 비하여 높은 함량으로 용출된 원인으로 판단된다. 실험 초기에 용출된 Fe는 미생물 접종 시료에서 시간에 따라 점진적으로 감소하였다. 용존 Zn, Pb, Ni, Cu의 경우 유산염을 공급하였을 때 미생물을 주입한 시료와 주입하지 않은 비교시료 간에 뚜렷한 함량 차이를 보이지 않았으나, 포도당을 공급하였을 때 약 20일 경과 시부터 Zn, Pb, Ni의 함량이 미생물접종 시료에서 급격하게 감소하였고 Cu는 비교시료보다 높은 용출량을 나타냈다. Cr과 As는 두 탄소원을 공급하였을 때 모두 미생물접종 시료와 비교시료에서 용출이 지속되었으나, 황산염을 주입하자 미생물 시료에서 용존 Cr은 급격히 감소하였고 As는 용출이 중단되었다. 황산염 주입 후 반응 용기에서 검은색 침전물이 형성되었다. 이를 X-선회절분석한 결과 미생물을 주입하였을 때 침전된 물질은 violarite($Fe^{+2}{Ni^{+3}}_2S_4$)로 추정되며 이는 철환원 및 미생물학적 황산염환원에 의하여 침전물이 형성될 때 중금속이 공침전한 것으로 여겨진다. 이상의 결과를 통해 볼 때 논토양에서 용출되기 쉬운 중금속이 미생물학적 황산염환원에 의해 고정화되는 효과를 기대할 수 있다.

The study was conducted to investigate the effects of indigenous bacteria on geochemical behavior of toxic heavy metals in contaminated paddy soil near an abandoned mine. The effects of sulfate amendment to stimulate microbial sulfate reduction on heavy metal behaviors were also investigated. Batch-type experiments were performed with lactate or glucose as a carbon source to activate indigenous bacteria in the soil under anaerobic condition for 100 days. Sulfate (250 mg/L) was artificially injected at 60 days after the onset of the experiments. In the case of glucose supply, solution pH increased from 4.8 to 7.6 while pH was maintained at 7~8 in the lactate solution. The initial low pH in the case of glucose supply likely resulted in the enhanced extraction of Fe and most heavy metals at the initial experimental period. Lactate supply exerted no significant difference on the amounts of dissolved Zn, Pb, Ni and Cu between microbial and abiotic control slurries; however, lower Zn, Pb and Ni and higher Cu concentrations were observed in the microbial slurries than in the controls when glucose supplied. Sulfate amendment led to dramatic decrease in dissolved Cr and maintenance of dissolved As, both of which had gradually increased over time till the sulfate injection. Black precipitates formed in solution after sulfate amendment, and violarite($Fe^{+2}{Ni^{+3}}_2S_4$) was found with XRD analysis in the microbial precipitates. Conceivably the mineral might be formed after Fe(III) reduction and microbial sulfate reduction with coprecipitation of heavy metal. The results suggested that heavy metals which can be readily extracted from contaminated paddy soils may be stabilized in soil formation by microbial sulfate reduction.

키워드

참고문헌

  1. Abdelouas, A., Lutze, W., Gong, W., Nuttall, E.H., Strietelmeier, B.A. and Travis, B.J. (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci. Total Environ., v.250, p.21-35 https://doi.org/10.1016/S0048-9697(99)00549-5
  2. Bae, D.Y., Kim, J.Y. and Ahn, G.G. (2008) Ecological health assessment and in situ pilot tests in the abandoned mine area. J. Mine Reclamation Technol., v.2, p.178-192. (in Korean)
  3. Ha, W.-K., Lee, J.-U. and Jung, M.C. (2006) Study on geomicrobiological reductive precipitation of uranium and its long-term stabilization. J. Korean Soc. Geosystem Eng., v.43, p.331-338. (in Korean)
  4. Jung, M.C. (1994) Sequential extraction of heavy metals in soils and a case study. Econ. Environ. Geol., v.27, p.469-477. (in Korean)
  5. Jung, M.C. and Jung, M.Y. (2006) Evaluation and management method of environmental contamination from abandoned metal mines in Korea. J. Korean Soc. Geosystem Eng., v.43, p.383-394. (in Korean)
  6. Kim, J.Y., Davis, A.P. and Kim, K.-W. (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol., v.37, p.189- 195 https://doi.org/10.1021/es020799+
  7. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. UN-ECE Symp. 325p
  8. Ko, M.-S., Park, H.-S. and Lee, J.-U. (2009) Bioleaching of heavy metals from tailings in abandoned Au-Ag mines using sulfur-oxidizing bacterium Acidithiobacillus thiooxidans. J. Korean Soc. Geosystem Eng., v.46, p.239-251. (in Korean)
  9. Lee, J.-U. and Chon, H.-T. (2000) Bacterial effects on geochemical behavior of elements: an overview on recent geomicrobiological issues. Econ. Environ. Geol., v.33, p.353-365. (in Korean)
  10. Lee, J.-U., Kim, S.M., Kim, K.-W. and Kim, I.S. (2005(a)) Microbial removal of uranium from uranium-bearing black shale. Chemosphere, v.59, p.147-154 https://doi.org/10.1016/j.chemosphere.2004.10.006
  11. Lee, S.E., Lee, J.-U., Lee, J.S. and Chon, H.-T. (2005(b)) Cr (VI) reduction by indigenous bacteria in anaerobic sediment. J. Korean Soc. Geosystem Eng., v.42, p.618-624. (in Korean)
  12. Lee, J.-U., Lee, S.W., Kim, K.-W., Lee, J.S. and Chon, H.-T. (2006) Geomicrobiological effects on arsenic behavior in anaerobic sediment from abandoned gold mine area. J. Korean Soc. Geosystem Eng., v.43, p.448-457.(in Korean)
  13. Lee, S.H., Ko, J.I. and Lee, J.S. (2008) Assessment of stabilization efficiency in heavy metal-contaminated soils. J. Mine Reclamation Technol., v.2, p.202-210. (in Korean)
  14. Liamleam, W. and Annachhatre, A.P. (2007) Electron donors for biological sulfate reduction. Biotechnol. Adv., v.25, p.452-463 https://doi.org/10.1016/j.biotechadv.2007.05.002
  15. Lovley, D.R. and Coates, J.D. (1997) Bioremediation of metal contamination. Curr. Opin. Biotechnol., v.8, p.285-289 https://doi.org/10.1016/S0958-1669(97)80005-5
  16. Luptakova. A. and Kusnierova. M. (2005) Bioremediation of acid mine drainage contaminated by SRB. Hydro metallurgy, v.77, p.97-102 https://doi.org/10.1016/j.hydromet.2004.10.019
  17. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R. and Morel, F.M.M (1997(a)) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. microbiol.,v.168, p.380-388 https://doi.org/10.1007/s002030050512
  18. Newman, D.K., Beveridge, T.J. and Morel, F.M.M. (1997(b)) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol, v.63, p.2022-2028
  19. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v.395, p.338 https://doi.org/10.1038/26387
  20. Park, J.M., Lee, J.S., Lee, J.-U., Chon, H.T. and Jung, M.C. (2006) Microbial effects on geochemical behavior of arsenic in Ascontaminated sediments, J. Geochem. Explor., v.88, p.134-138 https://doi.org/10.1016/j.gexplo.2005.08.026
  21. Song, D.-S., Lee, J.-U., Ko, I.-W. and Kim, K.-W. (2007) Study on geochemical behavior of heavy metals by indigenous bacteria in contaminated soil and sediment. Econ. Environ. Geol., v.40, p.575-585. (in Korean)
  22. Stookey, L.L. (1970) Ferrozine: a new spectrophotometric reagent for iron. Anal. Chem., v.42, p.779-781 https://doi.org/10.1021/ac60289a016
  23. Stumm, W. and Morgan, J.J. (1996) Aquatic chemistry, 3rd Ed. Wiley Interscience, 1022p
  24. Uhrie, J.L., Drever, J.I., Colberg, P.J.S. and Nesbitt, C.C. (1996) In situ immobilisation of heavy metals associated with uranium leach mines by bacterial sulphate reduction. Hydrometallurgy, v.43, p.231-239 https://doi.org/10.1016/0304-386X(95)00087-W
  25. Warner, T.E., Rice, N.M. and Taylor, N. (1996) Thermodynamic stability of pentlandite and violarite and new $E_{H}$-pH diagrams for the iron-nickel sulphur aqueous system. Hydrometallurgy, v.41, p.107-118 https://doi.org/10.1016/0304-386X(95)00081-Q
  26. Yang, J.E., Moon, D.H. and Ok, Y.S. (2008) Stabilization techniques for the soil contaminated with heavy metals. J. Mine Reclamation Technol., v.2, p.121-142. (in Korean)
  27. Yoo, K.K., Jeong, J.K., Sohn, J.S. and Lee, J.C. (2006) Application of sulfate-reducing bacteria for treatment of mine drainages. J. Korean Soc. Geosystem Eng.,v.43, p.160-167. (in Korean)