DOI QR코드

DOI QR Code

Control of Low-Level Dimethyl Sulfide and Dimethyl Disulfide by Applying Element-Doped Photocatalysts

원소-도핑 광촉매를 활용한 저농도 황화 이메틸 및 이황화 이메틸의 제어

  • Shin, Myeong-Hee (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • 신명희 (경북대학교 환경공학과) ;
  • 조완근 (경북대학교 환경공학과)
  • Published : 2009.11.30

Abstract

This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide($TiO_2$) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct($SO_2$) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped $TiO_2$ powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped $TiO_2$ was shifted to $\lambda$ 720 nm. The N-doped $TiO_2$ was superior to the S-doped $TiO_2$ in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped $TiO_2$ revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of $TiO_2$ would be an insignificant addition to indoor air quality levels.

Keywords

References

  1. Cheng X., E. Peterkin and G. A. Burlingame, 2005, A study on volatile organic sulfide causes of odors at Philadelphia's Northeast Water Pollution Control Plant, Wat. Res., 39, 3781-3790 https://doi.org/10.1016/j.watres.2005.07.009
  2. Smet E., P. Lens and H. Van Langenhove, 1998, Treatment of waste gases contaminated with odorous sulfur compounds, Crit. Rev. Environ. Sci. Technol., 28, 89-117 https://doi.org/10.1080/10643389891254179
  3. Mirabelli M. C. and S. Wing, 2006, Proximity to pulp and paper mills and wheezing symptoms among adolescents in North Carolina, Environ. Res., 102, 96-100 https://doi.org/10.1016/j.envres.2005.12.004
  4. Zhao J. and X. Yang, 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 38, 645-654 https://doi.org/10.1016/S0360-1323(02)00212-3
  5. Thara T., M. Miyoshi, Y. lriyama, O. Matsumoto and S. Sugihara, 2003, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B: Environ., 42, 403-409 https://doi.org/10.1016/S0926-3373(02)00269-2
  6. Hirano K., E. Suzuki, A. Ishikawa, T. Moroi, H. Shiroishi and M. Kaneko, 2000, Sensitization of TiO$_2$ particles by dyes to achieve H2 evolution by visible light, J. Photoch. Photobio. A, 136, 157-161 https://doi.org/10.1016/S1010-6030(00)00342-7
  7. Li X. Z. and F. B. Li, 2001, Study $^{3+}$-TiO$_2$ photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35, 2381-2387 https://doi.org/10.1021/es001752w
  8. Ohno T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, 2004, Preparation of S-enhanced TiO$_2$ photocataIysts and their photocatalytic activities under visible light, Appl. Catal. 265, 115-121 https://doi.org/10.1016/j.apcata.2004.01.007
  9. Asahi R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, 2001, Visible-light photocatalysis in nitrogenenhanced titanium oxides, Science, 293, 269-271 https://doi.org/10.1126/science.1061051
  10. Jacoby W. A., O. M. Blake, J. A. Fennell, J. E. Boulter, L. M. Vargo and M. C. George, 1996, Heterogeneous photocatalysis for control of volatile organic compounds in indoor air, J. Air Waste Manage. Assoc., 46, 891-898 https://doi.org/10.1080/10473289.1996.10467525
  11. Nosaka Y., M. Matsushita, J. Nishino and A. Y. Nosaka, 2005, Nitrogen-enhanced titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mat., 6, 143-148 https://doi.org/10.1016/j.stam.2004.11.006
  12. Catalan L. J. J., V. Liang, C. Walton and C. Q. Jia, 2007, Effects of process changes on concentrations of individual malodorous sulfur compounds in ambient air near a Kraft pulp plant in Thunder bay, Ontario, Canada, WIT Trans. Ecol. Environ., 101, 437-447
  13. Kim K. -H., E. -C. Jeon, Y. -So Koo, M. -So Im and Y. -H. Youn, 2007, An on-line analysis of reduced sulfur gases in the ambient air surrounding a large industrial complex, Atrmos. Environ., 41, 3829-3840 https://doi.org/10.1016/j.atmosenv.2007.01.032
  14. Wei F., L. Ni and P. Cui, 2008, Preparation and characterization of N-S-codoped TiO$_2$ photocatalyst and its photocatalytic activity, J. Hazard. Mater. 156, 135-140 https://doi.org/10.1016/j.jhazmat.2007.12.018
  15. Peng T., D. Zhao, K. Dai, W. Shi and K. Hirao, 2005, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chern. B 109, 4947-4952 https://doi.org/10.1021/jp044771r
  16. Soler-Illia G. J. A. A., A. Louis and C. Sanchez, 2002, Synthesis and Characterization of mesostructured titania-based materials through evaporation-induced self-assembly, Chern. Mater. 14, 750-759 https://doi.org/10.1021/cm011217a
  17. Sivakumar S., P. Krishna Pillai, P. Mukundan and K. G. K. Warrier, 2002. Sol-gel synthesis of nanosized anatase from titanyl sulfate, Mater. Lett. 57, 330-335 https://doi.org/10.1016/S0167-577X(02)00786-3
  18. Primet M.,P. Pichat and M. V. Mathieu, 1971, Infrared study of the surface of titanium dioxides. I. Hydroxyl groups, J. Phys. Chern. 75, 1216-1220 https://doi.org/10.1021/j100679a007
  19. Li H., J. Li and Y. Huo, 2006, Highly active TiO$_2$_N photocatalysts prepared by treating TiO$_2$ precursors in NH$_3$/ethanol fluid under supercritical conditions, J. Phys. Chern. B 110, 1559-1565 https://doi.org/10.1021/jp055830j
  20. Canela M. C., R. M. Alberici and W. F. Jardim, 1998, Gas-phase destruction of H$_2$S using TiO$_2$/UV-VIS, J. Photoch. Photobio. A: Chem. 112, 73-80 https://doi.org/10.1016/S1010-6030(97)00261-X
  21. Kataoka S., E. Lee, M. I. Tejedor-Tejedor and M. A. Anderson, 2005, Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO$_2$, Appl. Catal. B: Environ. 61, 159-163 https://doi.org/10.1016/j.apcatb.2005.04.018
  22. Col$\acute{o}$n G., M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello and J. A. Nav$\acute{l}$o, 2006. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO$_2$ photocatalyst, Appl. Catal. B: Environ. 63, 45-59 https://doi.org/10.1016/j.apcatb.2005.09.008
  23. Rengifo-Herrera J. A., E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi and C. Pulgarin, 2008, Escherichia coli inactivation by N, S co-doped commercial TiO$_2$ powders under UV and visible light, Appl. Catal. B: Environ. 84, 448-456 https://doi.org/10.1016/j.apcatb.2008.04.030
  24. Nishijima K., B. Ohtani, X. Yan, T. Kamai, T. Chiyoya, T. Tsubota, N. Murakami and T. Ohno, 2007, Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO$_2$ photocatalysts, Chem. Phys. 339, 64-72 https://doi.org/10.1016/j.chemphys.2007.06.014
  25. Vorontsov A. V., E. N. Savinov, C. Lion and P. G. Smimiotis, 2003, TiO$_2$ reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor, Appl. Catal. B: Environ., 44, 25-40 https://doi.org/10.1016/S0926-3373(03)00007-9
  26. Gonz$\acute{a}$lez-Garc$\acute{l}$a N., J. A. Ayllon, X. Dom$\acute{e}$nech and J. Peral, 2004, TiO$_2$ deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide, Appl. Catal. B: Environ., 52, 69-77 https://doi.org/10.1016/j.apcatb.2004.03.016
  27. Guillard C., D. Baldassare, C. Duchamp, M. N. Ghazzal and S. Daniele, 2007, Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor, Catal. Today, 122, 160-167 https://doi.org/10.1016/j.cattod.2007.01.059
  28. Higashimoto S., W. Tanihata, Y. Nakagawa, M. Azuma, H. Ohue and Y. Sakata, 2008, Effective photocatalytic decomposition of VOC under visible-light irradiation on N-enhanced TiO$_2$ modified by vanadium species, Appl. Catal. A: Gen., 340, 98-104 https://doi.org/10.1016/j.apcata.2008.02.003
  29. Noguchi T., A. Fujishima, P. Sawunytarna and K. Hashimoto, 1998, Photocatalytic degradation of gaseous formaldehyde using TiO$_2$ film, Environ. Sci. Technol. 32, 3831-3833 https://doi.org/10.1021/es980299+
  30. Obee T. N. and R. T. Brown, 1995, TiO$_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, Environ. Sci. Technol. 29, 1223-1231 https://doi.org/10.1021/es00005a013
  31. Nishikawa H. and Y. Takahara, 2001, Adsorption and photocatalytic decomposition of odor compounds containing sufur using TiO$_2$/SiO$_2$ bead. J. Mole. Catal. A: Chem. 172, 247-251 https://doi.org/10.1016/S1381-1169(01)00124-8
  32. Demeestere K., J. Dewulf, B. D. Witte, and H. V. Langenhove, 2005, Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways, Appl. Catal. B: Environ., 60, 93-106 https://doi.org/10.1016/j.apcatb.2005.02.023