DOI QR코드

DOI QR Code

Selection of Scale Model Materials for Acoustical Evaluation of 1:50 Multipurpose Halls

1:50 다목적홀의 음향평가를 위한 축소모형재료의 선정

  • 전진용 (한양대학교 건축공학부) ;
  • 김정준 (한양대학교 건축환경공학과) ;
  • 김용희 (한양대학교 건축환경공학과)
  • Published : 2009.11.30

Abstract

The absorption coefficients of the materials used in a 1:50 scale model multipurpose hall were measured based on ISO 354 and related laws. The shape and materials for the scale model were evaluated based on reflective surfaces, variable acoustic elements and sound-absorbing quality (125Hz-1kHz average) of seats. The measured average absorption coefficients of audience seats, audience and orchestra were 0.64, 0.74 and 0,45, respectively, which were simulated with the combination of wood, absorption materials and foam board. Various mounting methods for absorption curtain and banner were considered according to the installation methods. The average absorption coefficient was measured as 0.42, 0.47 and 0.45 in the conditions of Type A mounting, E mounting with 0.9 m backing air cavity, and Type G mounting which is suspended at the ceiling, respectively. It was confirmed that the absorption coefficient was increased at low frequency by backing air gap. The finishing material of stage house was an absorption material covered with thin fabric, which aimed average absorption coefficient of 0.68 by using fiber glass board. Each part of the real materials was compared with those of 1:50 scale model and it was found that the absorption characteristics of both cases were similar.

다목적홀의 음향을 1:50 축소모형으로 예측 및 평가하기 위해 필요한 모형재료의 구성과 흡음특성에 대해 연구하였다. 실제 홀에서의 반사면 및 가변음항요소, 객석의 설계요소별 흡음특성 (125Hz-lkHz 평균)을 기준으로 축소모형의 형상과 재질을 선정하였으며, 흡음율은 상사의 법칙과 ISO 354를 준용하여 측정하였다. 그 결과, 주벽체의 평균흡음율은 0.08로 래커 코팅된 MDF나 아크릴이 적합하며, 객석 의자, 관객 및 연주자 평균흡음율은 각각 0.64, 0.74와 0.45를 목표로 할때 목재, 흡음천과 폼보드를 조합하여 흡음률을 재현하였다. 흡음커튼과 배너는 적용부위 및 단면설계에 따라 흡음재의 마운팅 방법을 선택하였으며, 배면공기층이 없는 상태 (A형 마운팅)에서의 평균흡음율이 0.42, 0.9 m 배면공기층 조건에서 시료 양단이 고정된 상태 (E형 마운팅)에서는 0.47, 천장에 매단 상태 (G형 마운팅)에서는 0.45로 나타났다. 특히, 배면공기층의 증가에 의해 저주파 대역 흡음력이 증가하였다. 스테이지 하우스 내부는 평균흡음율 0.68의 Fiber glass board 시공을 예상하여 흡음재와 스피커망 원단을 조합하여 재현하였다. 본 연구에서 도출된 모형 재료의 형상과 흡음특성은 향후 1:50 축소모형으로 다목적홀의 형상에 의한 중주파 대역 이하의 음향예측에 유용하게 활용될 것으로 사료된다.

Keywords

References

  1. M. Barron, "Acoustic Scale Modeling for enclosed spaces" , Building Technical File. voI. 18, no. 1, pp. 51-56, 1987
  2. M. Barron, "Auditorium Acoustic Modeling Now" , Applied Acoustics, vol, 16, no. 4, pp. 279-290, 1983 https://doi.org/10.1016/0003-682X(83)90020-8
  3. M. Barron, C. B Chinoy "1:50 scale acoustic models for objective testing of auditoria" , Applied Acoustics. vol. 16, no, 5, pp. 361-75, 1979 https://doi.org/10.1016/0003-682X(79)90015-X
  4. A Cocchi ei al, "Reliability of Scale-Model Researches a Concert Hall Case" , Applied Acoustics, vol. 30, no. 1, pp. 1-13, 1990 https://doi.org/10.1016/0003-682X(90)90002-C
  5. Reichard W, “Raumakustische Modellunters uchungenmit dem Impuls-Schall-Test beim Neubau des Kongress und Konzertsaales im 'haus des Lehrers' am Alexanderplats, Berlin. Acoustica”, Berlin Acoustica. vol. 20, no. 3, pp. 149-58, 1968
  6. Day BF, "A tenth-scale model audience" , Applied Acoustics. vol. 1, no. 2, pp. 121-35, 1968 https://doi.org/10.1016/0003-682X(68)90014-5
  7. J. Newton, R Harris, Arup Acoustics, “The acoustic design of oslo opera house”, Porc. ISRA, Sevilla. 2007
  8. 전진용, 류종관, 유병철, "콘서트홀의 음향 예측을 위한 1:50 스케일 모델의 활용", 대한건축학회 논문집. 19권 1호, pp. 217-224, 2003
  9. ISO 354, "Measurement of sound absorption in a reverberation room"
  10. ISO 9613-1, "Attenuation of sound during propagation outdoors"
  11. Rendell R. Torres, U. Peter Svensson, and Mendel Kleiner, "Computation of edge diffraction for more accurate room acoustics auralization", J. Acoust. Soc. Am. vol. 109 no. 2, pp. 0001-4966, 2001 https://doi.org/10.1121/1.1340647
  12. ASTM E 795, “Standard practices for mounting test specimens during sound absorption tests”
  13. L. Beranek, T. Hidaka "Sound absorption in concert halls by seats, occupied and unoccupied, and by the hall’s interior surfaces", J. Acoust. Soc. Am. vol. 104 no. 6, pp. 3169-3177, 1998 https://doi.org/10.1121/1.423957
  14. L. Beranek, Concert Halls and Opera House, Springer, 1996
  15. M. Barron, S. Coleman, "Measurements of the absorption by auditorium seating-a model study", J. Sound Vib. vol. 239 no. 4, pp. 573-587, 2001 https://doi.org/10.1006/jsvi.2000.3127
  16. C. M. Harris, Handbook of acoustical measurements and noise control, American Institute of Physics, 1991
  17. C. Pilon, R. Panneton, "Effects of circumferential air gaps on the measurement of the absorption coefficient of poroelastic materials", J. Acoust. Soc. Am. vol. 115 no. 5, pp. 2383-2383, 2002
  18. J. Kang, H. V. Fuchs, "Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space", J. Sound Vib. vol. 220 no. 5, pp. 905-920, 1999 https://doi.org/10.1006/jsvi.1998.1977
  19. 일본음향재료협회, 소음 진동대책 핸드북, 집문사, 1983
  20. J. Y. Jeon, J. K. Ryu, Y. H. Kim, S. Sato, "Influence of absorption properties of materials on the accuracy of simulated acoustical measures in 1:10 scale model test", Applied Acoustics. vol. 70, no. 4, pp. 615-625, 2009 https://doi.org/10.1016/j.apacoust.2008.06.009
  21. R. Pompoli, N. Prodi, "Guidelines for acoustical measurements inside historical opera houses: Procedures and validation", J. Sound Vib. vol. 232 no. 1, pp. 281-301, 2000 https://doi.org/10.1006/jsvi.1999.2821