DOI QR코드

DOI QR Code

Studies on Potato Glycoalkaloid Determination by Acid-hydrolysis Method

산 가수분해 방법에 의한 감자 glycoalkaloid성분의 정량성 검토

  • Yoon, Kyung-Soon (Department of Food Technology & Food Service Industry, Yeungnam University) ;
  • Byun, Gwang-In (Department of Food Technology & Food Service Industry, Yeungnam University)
  • 윤경순 (영남대학교 식품외식학부) ;
  • 변광인 (영남대학교 식품외식학부)
  • Published : 2009.02.28

Abstract

This paper was conducted to evaluate aglycones and carbohydrates produced by acid hydrolysis of three potato glycoalkaloids [(PGA); ${\alpha}$-chaconine, ${\alpha}$-solanine, and demissine] in potatoes. Standard solanidine and demissidine were dissolved in 1N HCl and then heated at $100^{\circ}C$ for 10-120 min. Solanidine was rapidly decomposed during acid hydrolysis and one peak that was identified as solantherene ($M^+$=379) by GC-MS was detected. The transformation solanidine to solanthrene was approximately 50% complete after 10 min, approximately 90% complete after 60 min and 100% complete after 120 min. Demissidine was hydrolyzed using the same method that was used to hydrolyze the solanidine. However, demissidine produced only one peak upon GC-MS ($M^+$=399) analysis and was found to be very stable at increased temperatures. Acidy hydrolysis of ${\alpha}$-chaconine, ${\alpha}$-solanine and demissine resulted in the decomposition of ${\alpha}$-chaconine and ${\alpha}$-solanine to solanidine and solanthrene, respectively. Therefore, this hydrolysis method should not be utilized to produce PGA combining with solanidine as aglycone. The individual carbohydrates produced by the two PGAs by hydrolysis were very stable at increased temperatures; therefore, it was possible to quantify these PGAs based on calculation of the individual carbohydrate content. Conversely, because demissidine produced by the hydrolysis of demissine was extremely stable at increased temperatures, it was possible to quantify the PGA based on the aglycone produced by hydrolysis.

본 연구는 재배종 감자 덩이줄기에 존재하는 glycoalkaloid (PGA) 중 특히 ${\alpha}$-chaconine, ${\alpha}$-solanine, demessine을 산가수분해 처리하여 분해 생성물인 아그리콘 및 배당체를 분석하는 방법으로 PGA의 정량 가능 유무를 조사하였다. 1. 표준품의 solanidine을 1 N-HCl로 가수분해하면 산 가수분해 반응 10분 후부터 solanidine이 급속하게 감소하였고 새로운 피크가 급증하였다. 이 피크를 GC-MS로 분석한 결과, 분자 이온 피크($M^+$=379)가 검출되어 이 물질을 solanthrene으로 분류하였다. 이 solanidine-solanthrene의 반응은 시간의 경과에 따라 진행되었다. 2. 표준품의 demissidine을 solanidine과 같은 방법으로 가수분해하여 GC-MS로 분석한 결과, solanidine의 경우와는 상이하게 solanthrene는 검출되지 않았고 demissidine ($M^+$=399, 204,150)의 피크만이 검출되었다. 이로써 demissidine은 산 가수분해 처리에 의한 분해가 일어나지 않는 것을 추측 할 수 있었다. 3. ${\alpha}$-chaconine, ${\alpha}$-solanine, demessine를 산분해하면 ${\alpha}$-chaconine과 ${\alpha}$-solanine은 solanidine에서 solanthrene으로 분해 반응이 일어났다. 이 두 물질의 아그리콘인 solandine을 측정하는 방법으로는 PGA량을 산출하는 것은 불가능하리라 생각된다. 그러나 산 분해에 의해 생성된 배당체는 매우 안정하여 이 배당체의 당함량을 측정하여 이 두 물질의 PGA 함량을 산출하는 것은 가능하였다. demissine는 산 분해에 의해 생성된 아그리콘(demissidine)은 매우 안정하여 생성된 아그리콘의 양으로부터 demissine 함량을 산출하는 것은 가능하였다.

Keywords

References

  1. Bennett RD, Heftmann F. 1966. Separation of closely related steroids by an improved technique for continuous development of thin-layer chromatograms. J. Chromatogr, 21(3):488-490 https://doi.org/10.1016/S0021-9673(01)91346-9
  2. Bushway RJ, Barden ES, Bushway AW, Bushway AA. 1979. Highperformance liquid chromatographic separation of potato glycoalkaloids. J. Chromatogr, 178(2):533-541 https://doi.org/10.1016/S0021-9673(00)92512-3
  3. Cadle LS, Stelzig DA, Harper .L, Young RJ. 1978. Thin-layer chromatographic system for identification and quantification of potato tuber glycoalkaloids. J. Agric. Food Chem, 26(6):1453-1454 https://doi.org/10.1021/jf60220a033
  4. Crabbe PG, Fryer C. 1980. Rapid quantitative analysis of solasodine, solasodine glycosides and solasodine by high-pressure liquid chromatography. J. Chromatogr, 187(1):87-100 https://doi.org/10.1016/S0021-9673(00)87875-9
  5. Friedman M, Levin CE. 1992. Reversed-phase high-performance liquid chromatographic separation of potato glycoalkaloids and hydrolysis products on acidic columns. J. Agric. Food Chem, 40(11):2157-2163 https://doi.org/10.1021/jf00023a023
  6. Friedman M, Levin CF, McDonald GM. 1994. $\alpha$-tomatine determination in tomatoes by HPLC using pulsed amperometric detection. J. Agric. Food Chem, 42(9):1959-1964 https://doi.org/10.1021/jf00045a024
  7. Friedman M, McDonald GM. 1997. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critic Rev Plant Sci, 16(1):55-132 https://doi.org/10.1080/713608144
  8. Friedman M, McDonald GM. 1999. Postharvest changes in glycoalkaloid content of potatoes. In Impact of Processing on Food Safty; Jackson, L.S., Knize, M.G., Morgan, J.N., Eds.; Plenum: New York. pp 121-143
  9. Friedman M, McDonald GM. 1999. Steroidal glycoalkaloids. In Naturally Occurring Glycosides: Chemistry, Distribution and Biological Properties; Ikan, R/.Ed.; Wiley: New York. pp 311-342
  10. Gregory P, Sinden SL, Tingey WM, Chassin DA. 1981. Glycoalkaloids of wild, tuber-bearing Solanium species. J. Agric. Food Chem, 29(6):1212-1215 https://doi.org/10.1021/jf00108a028
  11. FAOSTAT data. 2006. Agricultural data found http://faostat.fao.org/ fapstat/
  12. Harvey MH, Morris BA, McMillan M, Marks V. 1985. Measurement of potato steroidal alkaloids in human serum and saliva by radio immunoassay. Hum. Toxicol., 4(5):503-512 https://doi.org/10.1177/096032718500400506
  13. Herbs SF, Fitzpatrick TJ, Osman SF. 1975. Separation of potato glycoalkaloids by gas chromatography. J. Agric. Food Chem, 23(3):520-523 https://doi.org/10.1021/jf60199a001
  14. Hohne E, Schreiber K, Ripperger H, Worch HH. 1966. Solanum alkaloids. IX. X-ray structure analysis of demissidine hydroiodide for the absolute configuration of solanidanes and 22, 26-iminocholestane at C-22. Tetrahedron, 22(2):673-678 https://doi.org/10.1016/0040-4020(66)80036-4
  15. King RR. 1980. Analysis of potato glycoalkaloids by gas chromatography of alkaloid components. J. Assoc. Off. Anal. Che, 63(6):1226-1230
  16. Kozukue N, Misoo S, Yamada T, Kamijima O, Friedman M. 1999. Inheritance of morphological characters and glycoalkaloids in potatoes of somatic hybrids between dihaploid solanum acaule and tetraploid solanium tuberosum. J. Agric. FoodChem, 47(10):4478-4483 https://doi.org/10.1021/jf990252n
  17. Keeler RF. 1986. Teratology of steroidal alkaloids. In The Alkaloids. Chemical and Biological Perspectives Pelletier, S.W., Ed.; Wiley: New York. pp 389-425
  18. McMillan M, Thompson JC. 1979. An outbreak of suspected solanine poisoning in schoolboys. Examination of criteria of solanine poisoning. Q.J. Med. 48(2):227-243
  19. Mondy NI, Owens-Mobley E, Gedde-Dahl SB. 1967. Influence of potassium fertilization on enzymatic activity, phenolic content and discoloration of potatoes. J. Food Sci, 32(4):378-381 https://doi.org/10.1111/j.1365-2621.1967.tb09689.x
  20. Rayburn JR, Bantle JA, Friedman M. 1994. Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem, 42(7):1511-1515 https://doi.org/10.1021/jf00043a022
  21. Rozumek KE. 1969. Thin-layer chromatographic separation of tomatidenol, solasodine and soladulcidine and yamogenin, diosgenin and tigonenin. J. Chromatogr, 40(1):97-102 https://doi.org/10.1016/S0021-9673(01)96623-3
  22. Sinden SL, Schalak JM, Stoner AK. 1978. Effects of day length and maturity of tomato plants on tomatine content and resistance to Colorado potato beetle. 103(5):596-600
  23. Vallejo RP, Ercegovich CD. 1978. Analysis of potato for glycoalkaloid content by radioimmunoassy (RIA). In: Methods and Standards for Environmental Measurments, Publication 519, National Bureau of Standards, Washington. D.C, 333-340
  24. Valverde M, Lavaud C, Boustie J, EI Badaoui H, Muguest B, Henry M. 1993. Solamargine: the main glycoalkaloid from the fruits of Solanum paludosum. Planta Med, 59(5):483-484