DOI QR코드

DOI QR Code

호랑나비의 용기 동안 조직 내 항산화 효소의 활성

Antioxidant Enzyme Activities in Tissues of Papilio xuthus during Pupal Stage

  • 신명자 (안동대학교 자연과학대학 생명과학과) ;
  • 김경근 (대구산업정보대학 방사선과) ;
  • 임재환 (안동대학교 자연과학대학 생명과학과) ;
  • 정형진 (안동대학교 생명자원과학부 생약자원) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • 발행 : 2009.02.28

초록

본 연구에서는 호랑나비의 용기 동안 혈림프, 지방체, 표피, 큐티클 및 중장에서 항산화효소의 활성을 조사하였다. 혈림프와 지방체에서 항산화효소 활성의 변화가 두드러지게 나타났다. SOD, CAT 및 GST의 활성은 높은 활성을 보인 반면, GPX와 GR은 상대적으로 활성이 매우 낮으므로 곤충의 변태기 동안 항산화과정에서 이들 효소의 역할은 매우 미미할 것으로 생각된다. 더불어 CAT의 활성은 대부분의 조직에서 용화 직후에 높은 활성을 보이며 상대적인 활성도 매우 높게 나타나고 있어 과산화수소의 분해에는 GPX보다는 CAT가 주로 관여할 것으로 생각된다. 또한 GPX와 GR의 활성보다는 GST의 활성이 전 조직에서 비교적 높게 나타나는 것으로 보아 lipid peroxidation을 통한 항산화 과정에도 GPX보다는 주로 GST가 관여할 것으로 생각된다.

The purpose of this study is to evaluate the activities of five different antioxidant enzymes in various tissues of Papilio xuthus during pupal stage. Superoxide dismutase (SOD) activity in haemolymph was the highest just after pupation and then decreased gradually until 7 days after pupation but the activity in other tissue was constant during metamorphosis. This result indicates that primary antioxidant process of reactive oxygen species proceed in haemolymph. Catalase (CAT) activity in studied tissues was also the highest just after pupation and its relative activity was also high during pupal stage, suggesting that CAT is the primary enzyme in catalysis of hydrogen peroxide. Glutathion peroxidase (GPX) activity was constant and its relative activity was very low in all tested tissues. Glutathione S-transferase (GST) activity in haemolymph was high at 3 days and 5 days after pupation, and the activity in fat body was the highest at the 1 day after pupation and then decreased gradually for 7 days after pupation. Glutathion reductase (GR) activity in haemolymph and fat body was high at 1 day after pupation, but relatively low GR activity was detected in the rest tissues. Based on these results, GST activity was higher than that of GPX and GR, and it is also believed that GST was more involved in reduction process through lipid peroxidation than GPX.

키워드

참고문헌

  1. Aebi, H. 1984. Catalase in vitro, pp. 121-126, In Packer, L. (ed.), Methods in Enzymology, Vol. 105, Academic Press Inc., NewYork
  2. Ahmad, S. 1992. Biochemical evidence of pro-oxidant allelochemicals by hervivorous insects. Biochem. Syst. Ecol. 20,269-296 https://doi.org/10.1016/0305-1978(92)90040-K
  3. Ahmad, S. 1995. Oxidative stress and antioxidant defenses in biology. pp. 38-272, Chapman and Hall, NewYork
  4. Ahmad, S., C. A. Pritsos, S. M. Bowen, C. R. Heisler, G. J. Blomquist, and R. S. Pardini. 1988. Subcellular distribution and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the southern army worm, Spodoptera eridania. Arch. Insect Bichem. Physiol. 7, 173-186 https://doi.org/10.1002/arch.940070304
  5. Ahmad, S., M. A. Beilstein, and R. S. Pardini. 1989. Glutathione peroxidase activity in insects: A reassessment. Arch. Insect Biochem. Physiol. 12, 31-49 https://doi.org/10.1002/arch.940120104
  6. Barbehenn, R. V. and J. Stannard. 2004. Antioxidant defense of the midgut epitherium by the peritrophic envelope in caterpillars. J. Insect Physiol. 9, 783-790
  7. Dalton, T. P., H. G. Shertzer, and A. Puga. 1999. Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67-101 https://doi.org/10.1146/annurev.pharmtox.39.1.67
  8. Downer, R. G. H. 1985. Lipid metabolism, pp. 77-113, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, Pergamon Press, Oxford
  9. Felton, G. W. 1995. Antioxidant defenses of invertebrates and vertebrates, pp. 356-434, In Ahmad, S. (ed.), Oxidative stress and Antioxidant Defenses in Biology, Chapman and Hall, NewYork
  10. Felton, G. W. and C. B. Summers. 1995. Antioxidant systems in insect. Arch. Insect Biochem. Physiol. 29, 187-197
  11. Flohe, L., A. Wolfgang, and W. A. Gunzler. 1984. Assay of glutathione peroxidase, pp. 105-114, In Packer, L. (ed.), Methods in enzymatic analysis, Academic Press Inc., New York
  12. Glatzle, D., J. P. Vuilleumier, F. Weber, and K. Decker. 1974. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 30, 665-668 https://doi.org/10.1007/BF01921531
  13. Grubor-Lajsic, G., W. Block, M. Telesmanic, A. Jovanovic, D. Stevanovic, and F. Baca. 1997. Effect of cold acclimation on the antioxidant defense system of two larval Lepidoptera. Arch. Insect Biochem. Physiol. 36, 1-10
  14. Habig, W. H. and W. B. Jakoby. 1981. Glutathione s-transferase in rat and human. Meth. Enzymol. 77, 218-231 https://doi.org/10.1016/S0076-6879(81)77029-0
  15. Halliwell, B. and J. M. C. Gutteridge. 1985. Free radicals in biology and medicine. pp. 323, Oxford University Press, London
  16. Krogh, A. and T. Weis-Fogh. 1951. The respiratory exchange of desert locust (Schisticerca gregaria), before, during and after flight. J. Exp. Biol. 28, 342-257 https://doi.org/10.1016/0022-1910(76)90223-7
  17. McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase an enzymic function for erythrocuprotein (Hemocuprotein). J. Biol. Chem. 244, 6049-6055
  18. Neto, P. C., E. J. H. Bechara, and C. Costa. 1986. Oxygen toxicity aspects in luminescent and non-luminescent elaterid larvae. Insect Biochm. 16, 381-385 https://doi.org/10.1016/0020-1790(86)90051-X
  19. Nickla, H., J. Anderson, and T. Palzkill. 1983. Enzymes involved in oxygen detoxification during development of Drosophila mlanogaster. Experentia. 39, 610-612 https://doi.org/10.1007/BF01971122
  20. Orr, W. C. and R. S. Sohal. 1994. Extension of life-span by over expression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130 https://doi.org/10.1126/science.8108730
  21. Pardini, R. S. 1995. Toxicity of oxygen from naturally occurring redox-active pro-oxidant. Arch. Insect Biochem. Physiol. 29, 101-118. https://doi.org/10.1002/arch.940290203
  22. Peric-Mataruga, V., D. Blagojevic, M. B. Spasic, J. Ivanovic, and M. Jankovic-Hladni. 1997. Effect of the host plant on the antioxidative defence in the midgut of Lymantria dispar L. caterpillars of different population origins. J. Insect Physiol. 43, 101-106. https://doi.org/10.1016/S0022-1910(96)00018-2
  23. Peters, L. D. and D. R. Livingstine. 1996. Antioxidant enzyme activities in embryologic and early larval stages of turbot. J. Fish Biol. 49, 986-997 https://doi.org/10.1111/j.1095-8649.1996.tb00095.x
  24. Pritsos, C. A., S. Ahmad, S. M. Bowen, A. J. Elliott, G. J. Blomquist, and R. S. Pardini. 1988. Antioxidant enzymes of the black swallowtail butterfly, Papilio polixenes and their response to the prooxidant allelochemical quercetin. Arch. Insect Biochem. Physiol. 8, 101-112 https://doi.org/10.1002/arch.940080204
  25. Pritsos, C. A., S. Ahmad, A. J. Elliott, and R. S. Pardini. 1990. Antioxidant enzyme levels response to prooxidant allelochemicals in larvae of southern armyworm moth, Spodoptera eridania. Free Radical Res. Commun. 9, 127-133 https://doi.org/10.3109/10715769009148580
  26. Riddiford, L. M. and M. Hori. 1985. Hormone action at the cellular level, pp. 37-84, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, Vol. 8, Pergamon Press, Oxford.
  27. Schafer, F. Q. and G. R. Buettner. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 30, 1191-1212
  28. Suzuki, Y. J., H. J. Forman, and A. Sevanian. 1997. Oxidant as stimulators of signal transduction. Free Radical Biol. Med. 22, 269-285 https://doi.org/10.1016/S0891-5849(96)00275-4