An Adaptive RLR L-Filter for Noise Reduction in Images

영상의 잡음 감소를 위한 적응 RLR L-필터

  • 김수용 (창신대학 항공메카트로닉스과) ;
  • 배성호 (동명대학교 멀티미디어공학과)
  • Published : 2009.01.30

Abstract

We propose an adaptive Recursive Least Rank(RLR) L-filter which uses an L-estimator in order statistics and is based on rank estimate in robust statistics. The proposed RLR L-filter is a non-linear adaptive filter using non-linear adaptive algorithm and adapts itself to optimal filter in the sense of least dispersion measure of errors with non-homogeneous step size. Therefore the filter may be suitable for applications when the transmission channel is nonlinear channels such as Gaussian noise or impulsive noise, or when the signal is non-stationary such as image signal.

본 논문에서는 로버스트 통계학의 순위 추정을 기반으로 하고 순서통계학의 L-추정자를 이용한 적응 순환 최소 순위(RLR) L-필터를 제안한다. 제안한 RLR-L 필터는 비선형 적응알고리즘을 가진 비선형 적응 필터로서 오차의 분산측정을 최소화하는 관점의 최적 필터로 가변적인 스텝 크기를 가지며 적응한다. 제안한 필터는 영상신호와 같은 비정체 신호나 가우시안 잡음 또는 임펄스 잡음과 같은 비선형 채널에 적합하다.

Keywords

References

  1. F. Palmieri and C. G. Boncelet, Jr., "A class of adaptive nonlinear filters," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, New York, pp. 1483-1486, 1988.
  2. I. Pitas and A. N. Venetsanopoulos, "Adaptive filters based on order statistics," IEEE Trans. Signal Processing, Vol.39, No.2, pp. 518-522, Feb. 1991. https://doi.org/10.1109/78.80845
  3. P. M. Clarkson and G. A. Williamson, "Constrained adaptive order statistic filter for minimum variance signal estimation," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. IV, San Francisco, CA, pp. 253-256, 1992.
  4. G. A. Williamson and P. M. Clarkson, "On signal recovery with adaptive order statistic filters," IEEE Trans. Signal Processing, Vol. 40, No.10, pp. 2622-2626, Oct. 1992. https://doi.org/10.1109/78.157309
  5. 김수용, "동급추정을 이용한 적응 순서통계필터," 경북대학교 석사학위논문, Feb. 1993.
  6. C. Kotropoulos and I. Pitas, "An Adaptive LMS L-filters for Noise Suppression in Images," IEEE Trans. Image Processing, Vol.5, No.12, Dec. 1996.
  7. J. Hajek and Z. Sidak, Theory of rank tests, Academic Press, New York, 1967.
  8. L. A. Jaeckel, "Estimating regression coefficients by minimizing the dispersion of the residuals," The annals of Mathematical Statistics, Vol.43, No.5, pp. 1449-1458, 1972. https://doi.org/10.1214/aoms/1177692377
  9. T. P. Hettmansperger, Statistical inference based on ranks, John Wiley & Sons, Inc, 1984.
  10. J. Jureckova, "Nonparameteric estimate of regression coefficients," The annals of Mathematical Statistics, Vol.42, No.4, pp. 1328-1338, 1971. https://doi.org/10.1214/aoms/1177693245
  11. S. Haykin, Adaptive filter theory: Second Edition, Englewood Cliffs, NJ: Prentice-Hall, 1991.
  12. Dirk T. M. Slock, "On the convergence behavior of the LMS and the normalized LMS algorithms," IEEE Trans. Signal Processing, Vol.41, No.9, pp. 2811-2825, Sep. 1993. https://doi.org/10.1109/78.236504