DOI QR코드

DOI QR Code

수열합성 법으로 성장된 산화 아연 나노로드의 전구체 농도에 따른 구조적, 광학적 특성 연구

Study the Effects of Precursor Concentration on ZnO Nanorod Arrays by Hydrothermal Method

  • 류혁현 (인제대학교 나노시스템공학과, 고안전차량 핵심연구소)
  • Ryu, H. (Department of Nano Systems Engineering, High Safety Vehicle Core Technology Research Center, Inje University)
  • 발행 : 2009.01.30

초록

본 연구에서는 metal oxide chemical vapor deposition (MOCVD)을 이용하여 p형 실리콘(100) 기판 위에 30 nm 두께의 산화 아연 완충층을 $500^{\circ}C$ 에서 증착 시킨 후, 그 위에 산화 아연 나노로드를 수열합성법을 이용하여 성장시켰다. 그리고 산화아연 나노로드 성장 시 0.02몰${\sim}$0.5몰의 다양한 농도의 전구체를 사용함으로써 그에 따라 변화되는 산화 아연 나노로드의 배열상태, 구조적, 그리고 광학적 특성 평가를 실시하였다. 특성 평가는 FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), 그리고 PL(photoluminescence) 등의 분석 방법들을 통해 이루어졌다 본 연구를 통하여 전구체의 농도가 증가할수록 나노로드의 직경과 길이가 길어지며 0.3몰의 농도에서 뛰어난 광학 특성이 나타나는 것을 발견할 수 있었다.

Zinc Oxide (ZnO) nanorods arrays were deposited on ZnO buffered p-Si(100) substrates by hydrothermal method. The ZnO buffer layer with a thickness of 30 nm was deposited by metal oxide chemical vapor deposition at $500^{\circ}C$. The structural and optical properties of ZnO nanorods arrays controlled by precursor concentrations from 0.06 to 0.5 M were studied by FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), and PL(photoluminescence), respectively. It was found that the structural and optical properties of ZnO nanorods arrays are changed significantly with increase of precursor concentration. The sizes of diameter and length of nanorods were increased as the concentration increase, and good optical property was shown with the concentration of 0.3 M.

키워드

참고문헌

  1. D.G Yoo, M.H. Kim, S.H. Jeong, and J.H Boo, J. Kor. Vac. Soc. 17, 73 (2008) https://doi.org/10.5757/JKVS.2008.17.1.073
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001) https://doi.org/10.1126/science.1060367
  3. R. Konenkamp, Robert C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004) https://doi.org/10.1063/1.1836873
  4. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 84, 3654 (2004) https://doi.org/10.1063/1.1738932
  5. J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005) https://doi.org/10.1063/1.1861510
  6. H. Jeon, V.P. Verma, K. Noh, D.H. Kim, W. Choi, and M. Jeon, J. Kor. Vac. Soc. 16, 359 (2007) https://doi.org/10.5757/JKVS.2007.16.5.359
  7. Y.C. Lee, S.Y. Hu, W. Water, K.K. Tiong, Z.C. Feng, Y.T. Chen, J.C. Huang, J.W. Lee, C.C. Huang, 1.L.S, and M.H. Cheng, J. Lumin. 129, 148 (2009) https://doi.org/10.1016/j.jlumin.2008.09.003
  8. MJ. Keum, I.H. Son, 1.S. Lee, S.K. Shin, and K.H. Kim, J. Kor. Vac. Soc. 12, 214 (2003)
  9. T. Ma, M. Guo, M. Zhang, YJ. Zhang, and X.D. Wang, Nanotechnology 18, 035605 (2007) https://doi.org/10.1088/0957-4484/18/3/035605
  10. J. J. Song, S. H. Baek, J. H. Lee, and S. W. Lim, J. Chem. Technol. Biotechnol. 83, 345 (2008) https://doi.org/10.1002/jctb.1817
  11. C.R. Kim. J.Y. Lee, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, C.S. Son, W.J. Lee, W.G. Jung, S.T. Tan, J.L. Zhao, and X.W. Sun, Solid State Commun. 148, 395 (2008) https://doi.org/10.1016/j.ssc.2008.09.034
  12. M. Guo, P. Diao, and S. M. Cai, J. Solid State Chem. 178, 1864 (2005) https://doi.org/10.1016/j.jssc.2005.03.031
  13. F. Li, Z. Li, and F. J. Jin. Mater. Lett. 61, 1876 (2007) https://doi.org/10.1016/j.matlet.2006.07.157
  14. J. H. Yang, J. H. Lang, L. L. Yang, Y. J. Zhang, D. D. Wang, H. G. Fan, H. L. Liu, Y. X. Wang, and M. Gao, J. Alloy. Compd. 450, 521 (2008) https://doi.org/10.1016/j.jallcom.2006.12.135
  15. S. Hirano, N. Takeuchi, S. Shimada, and K. Masuya, J. Appl. Phys. 98, 094305 (2005) https://doi.org/10.1063/1.2113418
  16. X. W. Sun, J. L. Zhao, S. T. Tan, L. H. Tan, C. H. Tung, G. Q. Lo, D. L. Kwong, Y. W. Zhang, X. M. Li, and K. L. Teo, Appl. Phys. Lett. 92, 111113 (2008) https://doi.org/10.1063/1.2896611
  17. C. Pacholski, A. Komowski, and H. Weller, Angew. Chern. Int. Ed. 41, 1188 (2002) https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5
  18. B. Liu and H.C. Zeng, J. Am. Chern. Soc. 125, 4430 (2003) https://doi.org/10.1021/ja0299452
  19. Z. Gui, X. Wang, J. Liu, S.S. Yan, Y.Y. Ding, Z.Z. Wang, and Y. Hua, J. Solid State Chem. 179, 1984 (2006) https://doi.org/10.1016/j.jssc.2006.03.035
  20. A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006) https://doi.org/10.1002/smll.200600134
  21. L. Wang, Y. Pu, W.Q. Fang, J.N. Dai, C.D. Zheng, C.L. Mo, C.B. Xiong, and F.Y. Jiang, Thin Solid Films 491, 323 (2005) https://doi.org/10.1016/j.tsf.2005.05.048