DOI QR코드

DOI QR Code

투명전자소자를 위한 HfO2계 투명 MIM 커패시터 특성연구

Characteristics of Transparent Mim Capacitor using HfO2 System for Transparent Electronic Device

  • 조영제 (국립순천대학교 미래전략신소재공학과) ;
  • 이지면 (국립순천대학교 미래전략신소재공학과) ;
  • 곽준섭 (국립순천대학교 미래전략신소재공학과)
  • Jo, Young-Je (Department of Materials Science and Metallurgical Engineering, Sunchon National) ;
  • Lee, Ji-Myon (Department of Materials Science and Metallurgical Engineering, Sunchon National) ;
  • Kwak, Joon-Seop (Department of Materials Science and Metallurgical Engineering, Sunchon National)
  • 발행 : 2009.01.30

초록

투명 전자소자의 고유전 $HfO_2$ 절연막을 개발하기 위하여, ITO/$HfO_2$/ITO 금속-절연체-금속 (Metal-Insulator-Metal, MIM) 커패시터 구조를 형성한후 $HfO_2$ 박막의 두께에 따른 전기적, 광학적, 구조적 특성의 변화를 연구하였다. $HfO_2$ 박막의 두께가 50 nm에서 300 nm로 증가함에 따라 유전상수는 20에서 10이하로 감소하였으나, $HfO_2$ 두께가 증가함에 따라 누설전류는 감소하여 200 nm 이상의 두께에서는 $2.7{\times}10^{-12}\;A/cm^2$ 이하의 낮은 누설전류 특성을 나타내었다. ITO/$HfO_2$/ITO MIM 커패시터의 $HfO_2$ 박막의 두께가 50 nm에서 300 nm로 증가함에 따라 투과율은 감소하였으나 300 nm 두께에서도 가시광선 영역에서 80% 이상의 투과율을 나타내어 우수한 투과도 특성을 나타내었다.

The effects of $HfO_2$ film thickness on electrical, optical, and structural properties were investigated. We fabricated ITO/$HfO_2$/ITO metal-insulator- metal (MIM) capacitor using transparent conducting oxide. When $HfO_2$ film thickness increase from 50 nm to 300 nm, dielectric constant of $HfO_2$ was decreased from 20.87 to 9.72. The transparent capacitor shows an overall high performance, such as a dielectric constant about 21 by measuring the ITO/$HfO_2$/ITO capacitor structures and a low leakage current of $2.75{\times}10^{-12}\;A/cm^2$ at +5 V. Transmittance above 80% was observed in visible region.

키워드

참고문헌

  1. J. F. Wager, science 300, 1269 (2003) https://doi.org/10.1126/science.1083212
  2. K. Nomura, H. Ohta, A. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004) https://doi.org/10.1038/nature03090
  3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006) https://doi.org/10.1063/1.2353811
  4. H. S. Momose, M. One, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai, IEEE Trans.Electron Devices 43, 1233 (1996) https://doi.org/10.1109/16.506774
  5. W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J. J. Wortman k. D. Meyer, and abdalla Naem, IEEE Trans.Electom Devices 47, 1393, (2000) https://doi.org/10.1109/16.848282
  6. Y. C. Yeo, T. J. King, and C. Hu, Appl. Phys. Lett. 81, 2091 (2002) https://doi.org/10.1063/1.1506941
  7. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243(2001) https://doi.org/10.1063/1.1361065
  8. J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko, and C. Hu, IEEE Trans. Electron Devices, 38, 3m 545 (1991) https://doi.org/10.1109/16.75165
  9. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76 176 (2000) https://doi.org/10.1063/1.125694
  10. Q. Lu, D. Park, A Kalnitsky, C. Chang, C. C. Cheng, and S. P. Tay, IEEE Electron Device Lett 19, 341 (1998) https://doi.org/10.1109/55.709635
  11. S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, and W. L. Gladfelter, et al. IEEE Trans Electron Devices 44, 104. (1997) https://doi.org/10.1109/16.554800
  12. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and Hideya kumomi, Appl. Phys. 89, 112123 (2006)
  13. M. Houssa, V. V. Afanasev, A Stesmans, and M. M. Heyns, Appl. Phys. Lett. 77, 1885 (2000) https://doi.org/10.1063/1.1310635
  14. J. Zhu, Y. R. Li, and Z. G. Liu, J. Phys. D, 37, 2896 (2004) https://doi.org/10.1088/0022-3727/37/20/017
  15. T. H. Pemg, C. H. Chien, C. W. Chen, P. Lehnen, and C. Y. Chang, Thin Solid Films, 469, 345 (2004) https://doi.org/10.1016/j.tsf.2004.08.148
  16. H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, IEEE Device Lett, 23, 514 (2002) https://doi.org/10.1109/LED.2002.802602
  17. B. D. Ahn, J. H. Kim, H. S. Kang, C. H. Lee, S. H. Oh, G. H. Kim, D. H. Li. and S. Y. Lee, Materials Science in semiconductor processing, 9, 1119 (2006) https://doi.org/10.1016/j.mssp.2006.10.030
  18. J. H. Sim, S. C. Song, P. D. Kirsch, C. D. Young, R. Choi, D. L. Kwong, B. H. Lee, and G. Bersuker, Microelectronic Enginerring, 80, 218 (2005) https://doi.org/10.1016/j.mee.2005.04.071
  19. J. M. Le'ger, J. Haines, and B. Blanzat, J. Mater. Sci. Lett. 13, 1688 (1994) https://doi.org/10.1007/BF00451741
  20. J. M. Le'ger, A Atouf, P. E. Tomaszewski, and A. S. Pereira, Phys. Rev. B, 48, 93 (1993) https://doi.org/10.1103/PhysRevB.48.93
  21. A. I. Kingon and S. K. streiffer, current opinion in solid state & mater. Sci. 4, 1 39 (1999) https://doi.org/10.1016/S1359-0286(99)80009-6
  22. A. Antony, M. Nisha, R. Manoj, and M. K. Jayaraj, Appl. Surf. Sci. 225, 294 (2004) https://doi.org/10.1016/j.apsusc.2003.10.017