CONSTRUCTIONS OF (0,1)-MATRIX WITH PERMANENT k

  • Park, Se-Won (Department of Mathematics, Shingyeong University)
  • 투고 : 2009.11.05
  • 심사 : 2009.11.24
  • 발행 : 2009.12.30

초록

The purpose of this paper is to show that for each integer k where $1{\geq}k{\geq}2^{n-1}$, there exists an $n{\times}n(0,1)$-matrix A with exactly PerA = k. Thus we introduce a constructive approch for such matrices. Using the permanent of (0,1)-matrix, we decomposed the number n! with an linear combination of the power of 2. That coefficient is an stiring number.

키워드

참고문헌

  1. R. A. Brualdi and H. J. Ryser Combinatorial Matrix Theory, Encyclopedia of Math. and Its Appl. Cambridge University Press, New York, 1991.
  2. T. H. Foregger On the minimum value of the permanent of a nearly decomposable doubly stocastic matric, Linear Algebra Appl. 32 (1980), 75-85. https://doi.org/10.1016/0024-3795(80)90008-7
  3. S. G. Hwang Minimum permanent on faces of staircase type of the polytope of doubly stocastic matrices, Linear Algebra Appl. 18 (1985), 271-306.
  4. D. Konig. Theorie der endlichen und unendlichen Graphn, Leipzig, 1936
  5. M. Marcus and H. Minc. Modern University Algebra, New York, 1966
  6. M. Muir. On a class of permanent symmetric fucntions, Proc. Roy. Soc. Edinburgh 11 (1882), 111-120