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CONSTRUCTIONS OF (0, 1)–MATRIX
WITH PERMANENT k

Se-won Park*

Abstract. The purpose of this paper is to show that for each integer k
where 1 ≥ k ≥ 2n−1, there exists an n × n(0, 1)-matrix A with exactly
PerA = k. Thus we introduce a constructive approch for such matrices.
Using the permanent of (0, 1)-matrix, we decomposed the number n! with
an linear combination of the power of 2. That coefficient is an stiring number.

1. Introduction

Mordern mathematicians have a proclivity to invent flippant names for

newly introduced mathematical entities and concepts. They delight in talk-

ing about mobs, radicals, derogatory matrices, osculating planes, improper

ideals, etc. It may appear that the term ”permanent” was also invented by

a waggist algebraist.

In his famous memoir of 1812, Cauchy developed the theory of determi-

nants as a special type of alternating symmetric functions, which he distin-

gushed from the ordinary symmetric functions by calling the latter ”fonc-

tions symetriques permanentes”. He also introduced a certain subclass of

symmetric functions, which were later named permanents by Muir[6] and

which are nowadays known by this name. These functions can be defined

by means of matrices and mordern notaion as follows.

Let A = [aij ] be an m × n matrix over any commutative ring, m ≤ n.

The permanent of A, written Per(A), or simply PerA, is defind by

Per(A) =
∑

σ

a1σ(1)a2σ(2) · · · amσ(m)

where the summation extends over all one-to-one functions from
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{1, · · · , m} to {1, · · · , n}. The sequence a1σ(1), a2σ(2), · · · , amσ(m) is called a

diagonal of A. Thus the permanent of A is the sum of all diagonal products

of A. For a example, if

A = [ 3 2 4 ]

B =
[

3 2 4
2 1 5

]

C =

[
3 2 4
2 1 5
−1 2 −2

]

then PerA = 9, P erB = 44, P erC = 18. The special case m = n is of

particular importance. We denote the permanent of a square matrix A by

per(A) instead of Per(A). In fact, most writers restrict the designation

”permanent” to the case of square matrices in [1], [2], and [3].

We shall require the following simplifying notation. Let Γr,n denote the

set of all nr sequences ω = (ω1, · · · , ωr) of integers, 1 ≤ ωi ≤ n, i = 1, · · · , n,

Let Gr,n denote the subset of Γr,n consisting of all nondecreasing sequences,

Gr,n = {(ω1, · · · , ωr) ∈ Γr,n| 1 ≤ ω1 ≤ · · · ≤ ωr ≤ n}

and let Qr,n be the set of increasing sequences,

Qr,n = {(ω1, · · · , ωr) ∈ Γr,n| 1 ≤ ω1 < · · · < ωr ≤ n}

We shall also require the following matrix notation. Let Mm,n(S), or

simply Mm,n, denote the set of all m×n matrices with entries from a set S.

If m = n, we shall write Mn instead of Mn,n. Now, let A = [aij ] ∈ Mm,n,

and let α ∈ Gh,m and β ∈ Gk,n. Then A[α|β] denotes the h×k matrix whose

(i, j)-entry is aαiβj
. If it happens that α ∈ Qh,m and β ∈ Qk,n, then A[α|β]

is a submatrix of A. If α = β, we simplify the notation to A[α]. Again, if

α ∈ Qh,m and β ∈ Qk,n, then A(α|β) denotes the (m−h)×(n−k) submatrix

of A complementary to A[α|β] - that is, the submatrix obtained from A by

deleting rows α and columns β. In particular, the (m − h) × n submatrix

obtained from A by deleting rows α is denoted by A(α|−) simlarly, A(−|β)

denotes the m× (n−k) submatrix obtained from A by the deleting columns

β .
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Lemma 1.1. (a) The permanent function on m × n matices, , m ≤ n,

is a multilinear function of the rows of each matrix. If m = n, it is also a

multilinear function of the columns.

(b) If A is an m×n matrix, m ≤ n , and P and Q are permutation matrices

of orders m and n, respectivly, then

Per(PAQ) = Per(A)

(C) If A is an n× n matrix, then

Per(AT ) = Per(A)

All these properties are immediate consequences of the definition of per-

manents. Our next Lemma is an analogue of the Laplace expantion theorem

for determinants.

Lemma 1.2. If A is an m× n matrix, 2 ≤ m ≤ n, and α ∈ Qr,m, then

Per(A) =
∑

ω∈Qr,m

Per(A[α|ω])Per(A(α|ω)).

In particular, for any i, 1 ≤ i ≤ m,

Per(A) =
n∑

t=1

aitPer(A(i|t))

If m = n and β ∈ Qr,n, then also

Per(A) =
∑

ω∈Qr,n

Per(A[ω|β])Per(A(ω|β)).

and for any j, 1 ≤ j ≤ n

Per(A) =
n∑

t=1

atjPer(A(t|j)).

The proof of Lemma 1.2 is quite straightforward. In fact, it is must easier

than the corresponding theorem for determinants.
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2. The permanent of matrices

Matrices all of whose entries are either 0 or 1 -that is,(0, 1)-matrices pay

an important part in linear algebra, combinatorics, and graph theory. In

some of these applications it is at times preferable to consider 1 as the

”all” element in a Boolean algebra, or the identity element in a field of

two elements. In what follows, however, the symbol 1 will represent the

positive integer 1, since we shall be mainly concerned with enumerations of

systems of distinct representatives and with related problems in the theory

of permanents.

An n-square nonnegative matrix is said to be partly decomposable if it

contains a k× (n− k) zero submatrix. In order wards, a matrix A is partly

decomposable if there exist permutation matrices P and Q such that

PAQ =
[

B C
0 D

]

where B and D are square. If the matrix contains no k × (n − k) zero

submatrix for k = 1, · · · , n− 1, it is called fully indecomposable.

Lemma 2.1. ([4,5] Frobenius-Konig) Let A be an n-square matrix. A

necessary and sufficient condition for every diagonal of A to contain a zero

entry is that A contain an s× t zero submatrix such that s + t = n + 1.

By the above, we have the following result.

Lemma 2.2. Let A be an n-square matrix. Then PerA = 0 if and only

if A contains an s× t zero submatrix such that s + t = n + 1.

By Lemma 2.1 and 2.2, we know that if A is a fully indecomposable

n-square (0, 1)-matrix with row sums r1, · · · , rn, then

PerA ≥ {max ri|1 ≤ i ≤ n}.
Equallity hold if and only if at least n−1 of the row sums equal 2. Let Jn be

an n× n matrix that entries are all 1. Then by the definition, PerJn = n!

and by the Lemma 1.1, there exists an n×n (0, 1)-matrix A with PerA = 0.

Thus it is clear that if A is an n× n (0, 1)-matrix then

0 ≤ PerA ≤ n!.
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Theorem 2.3. Let A be an n-square (0, 1)-matrix. Then there does not

exist an n× n (0, 1)-matrix A with

(n− 1)
n

· n! < PerA < n!.

Proof. By the Lemma 1.1, we know that for any i, j, the matrix form

Jn −Eij has the same permanent as

Per(Jn − Eij) =
(n− 1)

n
· n!

Where Eij is an n × n matrix that the(i, j)-th entry is ! and otherwise are

all zero. Since Per(Jn−Eij) have (n2−1)’s nonzero entries, therefore there

does not exist an n× n (0, 1)-matrix A with

(n− 1)
n

· n! < PerA < n!.

¤

Now, we show that for each integer k with 1 ≤ k ≤ 2n−1, there exists

an n × n (0, 1)-matrix A with exactly PerA = k. Thus we introduce a

constructive approch for such matrices. Let A(k) denote the matrix with

PerA(k) = k. Then we can choose the representative (0, 1)-matrices as

followings ;

A(1) =




1
... 1 · · · 1

. . .
... · · · · · · · · ·

0
...

...
... In−1

0
...




,

and

A(2n−1) =




1
... 1 · · · 1

. . .
... · · · · · · · · ·

1
...

...
... ∆n−1

1
...
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where In−1 is the (n − 1) × (n − 1) identity matrix and ∆n−1 is the the

(n−1)×(n−1) lower-triangular matrix with all 1 entries. Adding the entries

from A(1) to A(2n−1), we construct the matrix with exactly PerA = k for

each integer k with 1 ≤ k ≤ 2n−1. By the Lemma 1.2, for each i, 2 ≤ i ≤ n,

Per(A(1) + Ei1) = Per(A(1)) + 1 = A(2)

and for each i(3 ≤ i ≤ n), j(2 ≤ j ≤ i− 1)

Per(A(∗) + Eij) = Per(A(∗)) + 2j−2 = A(2)

where

A(∗) = A(1) +
i−1∑
p=2

p−1∑
q=1

Epq.

By the above fact, we have the following theorem.

Theorem 2.4. Let A be an n-square (0, 1)-matrix. Then there exists an

n× n (0, 1)-matrix A with exactly PerA = k where 1 ≤ k ≤ 2n−1.

For example, let n = 5 and Per(A(k)) = k. Then there exists 5 × 5

(0, 1)-matrices A(k) where 1 ≤ k ≤ 25−1 = 16.

A(1) =




1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , A(2) =




1 1 1 1 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

A(3) =




1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , A(4) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

A(5) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 0 0 1 0
0 0 0 0 1


 , A(6) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
0 0 0 0 1


 ,

A(7) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
0 0 0 0 1


 , A(8) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 0 0 1


 ,
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A(9) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 0 0 0 1


 , A(10) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 0 0 1


 ,

A(11) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 0 1 0 1


 , A(12) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1


 ,

A(13) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 0 0 1 1


 , A(14) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 0 1 1


 ,

A(15) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 0 1 1 1


 , A(16) =




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1




Remark 2.5. Using the permanent of (0, 1)-matrix, we decomposed the

number n! with an linear combination of the power of 2. That coefficient

is an stiring number. We know that Per(Jn) = n! and there exists the

matrix A(2n−1) in the above, n! = 2n−1 + Lwhere L is at most an linear

combination of the leading power of 2n−2. Adding the entries from A(2n−1)

to Jn, we give an n!-equation.

By the Lemma 1.1 and 1.2, let the matrix An−1 = A(2n−1) + E(n−1)n.

Then
Per(A(2n−1) + E(n−1)n) = Per(A(2n−1)) + Per(A(2(n−1)−1))

= 2n−1 + 2(n−1)−1

= 2n−1 + 2n−2

and let the matrix An−2 = An−1 + E(n−2)(n−1) + E(n−2)n. Then,

Per(A(2n−1) + E(n−2)(n−1) + E(n−2)n)

= Per(A(2n−1)) + Per(A(n−1)−1) + Per(A(n−1)−1)

= Per(A(2n−1)) + 2Per(An−2)

= 2n−1 + 2 · (2n−2 + 2n−3)
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Continuating the above method to Per(A2) = Per(Jn), we have the equa-

tion

n! =
n−1∑
q=1

anq2q

where an(n−1) = 1, an1 = (n− 2) · an−1)1 and if q 6= (n− 1) or 1 then

anq = (n− 2) · a(n−1)q + a(n−1)(q−1)

Therefore, we have a coefficient table of the power of 2 as followings.




n
... 21 22 23 24 25 26 27 28 · · ·

· · · ... · · · · · · · · · · · · · · · · · · · · · · · · · · ·
3

... 1 1

4
... 2 3 1

5
... 6 11 6 1

6
... 24 50 35 10 1

7
... 120 274 225 85 15 1

8
... 720 1764 1624 731 165 21 1

9
... 5040 13068 13132 6741 1886 312 28 1

...
...

...
...

...
...

...
...

...
...

...




For example, let n = 5,

Per(A4) = Per(A(24) + E45)

= Per(




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


 + E45)

= Per(




1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1


)

= 24 + 23 = 24
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Per(A3) = Per(A4 + E34 + E35)

= Per(




1 1 1 1 1
1 1 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


)

= (24 + 23) + 2 · (23 + 22) = 48

and
Per(A2) = Per(A3 + E23 + E24 + E25)

= Per(




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


) = Per(Jn)

= ((24 + 23) + 2 · (23 + 22))

+ 3 · ((23 + 22) + 2 · (22 + 21)) = 120

Therefore,

5! = 1 · 24 + 6 · 23 + 11 · 22 + 6 · 21 = 120
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