DOI QR코드

DOI QR Code

Computing Biquadratic Transformation Matrix

쌍이차 변환행렬의 계산

  • 김동민 (홍익대학교 전자전기공학과) ;
  • 추연석 (홍익대학교 전자전기공학과)
  • Published : 2009.02.01

Abstract

Recently it has been shown in the literature that a biquadratic transformation can be used to deal with the pathological cases arising in the bilinear transformation. This paper concerns the computational aspect of the biquadratic transformation. Two efficient algorithms are presented to compute the transformation matrix.

Keywords

References

  1. H. Xu, A. Datta, and S.P. Bhattacharyya, "Computation of all stabilizing PID gains for digital control systems," IEEE Trans.Autom. Control, vol. 46, no. 4, pp. 647-652,2001 https://doi.org/10.1109/9.917670
  2. M. Jalili-Kharaajoo and B. N. Araabi, "The schur stability via the Hmwitz stability analysis using a biquadratic transformation," Automatica, vol. 41, no. l,pp. 173-176,2005 https://doi.org/10.1016/j.automatica.2004.09.004
  3. Y. Choo, "Computing transformation matrix for bilinear s-z transformation," IEICE Trans. Fundamentals, vol. E90-A, no. 4,pp. 872-874, 2007 https://doi.org/10.1093/ietfec/e90-a.4.872
  4. S. Erfani, M. Ahmadi, and V. Ramachandran, "The general biquadratic transformation of polynomials," IEEETrans..Circuits Syst., vol. 35, pp. 1547-1549, 1988 https://doi.org/10.1109/31.9920