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Computing Biquadratic Transformation Matrix
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Abstract : Recently it has been shown in the literature that a biquadratic transformation can be used to deal with the pathological
cases arising in the bilinear transformation. This paper concerns the computational aspect of the biquadratic transformation. Two
efficient algorithms are presented to compute the transformation matrix.
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LINTRODUCTION
Consider an nth-order discrete-time polynomial

D()=3dz' m
i=0
As is well known the Schur stability of D(z) can be determined via
the Hurwitz stability of a transformed continuous-time polynomial
C(s). Typically C(s) is obtained from D(z) through a bilinear
transformation as follows : Set

s+1
S @
and compute C(s) by
C(s)= (s - 1)"D<j—j> )

The transformation given in (2) maps the inside (outside, respectively)
of the unit circle in the z-domain to the open lefi-half plane (open
right-half plane, respectively) in the s-domain, and vice versa. The unit
circle (except z=1) in the z-domain is mapped to the imaginary
axis in the s-domain, and vice versa, and z =1 cormesponds to
s=c0. Asaresult, D(z) is Schur stable if and only if C(s) is
Hurwitz stable provided D(z) has no zeros at z =1 . However, if
D(z) has one or more zeros at z =1, then order of C(s) is less
than that of D(z) , and Hurwitz stability analysis of C(s) does not
give any conclusive results on the Schur stability of D(z) [1,2]. Such
a pathological case, for example, may arise when designing a discrete-
time PID controller for a plant with zerosat z =1[1].

Recently it has been shown in [2] that instead of a bilinear
transformation, a biquadratic transformation can be used for the
stability analysis and design of digital control system. A biquadratic
transformation introduced in [2] takes the following form

s 4s+1
z=—

Q)

2 —s+1
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Then D(z) is transformed to a continuous-time polynomial

C(s) = 2znc,.s" o)
i=0
by
2
Cs)= (2 s +1y" DTS, ©
' sC—s+1

The biquadratic transformation defined in (4) possesses the same
mapping properties as those of the bilinear transformation given in (2)
except that z =1 in the z-domain is mapped to s=0 in the s-
domain [2]. Hence the Schur stability of D(z) can be determined
by the Hurwitz stability analysis of C(s) evenif D(z) has zeros
at z=1.

This paper concerns the computational aspect of the biquadratic
transformation. The relationship between the coefficients in (1) and
(5) can be expressed by the matrix equation

c=0,d Q)

where O, = [qi;’-] is the 2n+1)x(n+1) transformation matrix,

e=[co @ e}l and d=[d, d, d,). For the
bilinear transformation several efficient techniques have been
suggested for computing O, (see [3] and references cited therein).
However no literature except [4] deals with the computation of the
biquadratic transformation matrix. In [4], an explicit but quite a
complicated formula for computing q; was given for a general

biquadratic transformation. A recurrence relationship was also
established in [4], which enables one to easily compute the elements
of O, . But it still requires computing the first two rows and the first

column using the complicated formula.
In this paper two efficient algorithms are presented for computing
the biquadratic transformation matrix Q,. The first algorithm takes

the following form

9; =4 GG+ a,()q, 5,
+ay(, N, 5+ a, (D,

®

by which one can recursively compute the elements of the jth column
of Q.. Asimilar result for a bilinear transformation was given in [3].
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Hence (8) is an extension of [3] to the biquadratic transformation
defined in (4). The second algorithm provides a simple procedure to
successively compute (,, s of various order starting from the initial

condition O, =[1].

L ALGORITHMS
1. Algorithm 1

C(s) in(6)is given by

C(s)= fa;(sz —s+ )" st s+ 1) )
=0
Let
Ri(s)=(s" s+ )" (s*+5+1)/ (10)
Then
2n .
Ri(9)=2q5s' )
i=0
Differentiating (10) leads to
My o AN 2 -1
RY7(s) = [n— 2s })(S s+1) 12)
+jQ2s+1)(s* +s+ DR, (5)
or
*+s?+ DRV () = [n2s 457 +5-1) .
~ J25* = DR (s)
Differentiating (13), we have
*+57+DRP () = [’ +57 +s-1)- j(257 -2)
~ (45> +20)RV (5) (14)

+ [n(6s> +25+1)~ jasIR,(s)
Repeating the same process, we obtain

(4 +s? +1)R§:”(s) = 2 4 s s B (257 -2 2dsS 4 23)]11(,.2)(5-)

b 120657 4 25 +1) - s - (125 4 28 s)
+ 028 +2)- jAIR}(s)
(15)
6t es?e 1)R§4)(-f) = [n2s® #5245 =1y j(25% - 2) =345 + 2,5')]R§3)(s)
+ (652 425+ - j125 30122 + 2)]R§2)(s)

+ (125 +2)- j12— 24s]R§-])(s)
+ 1211Rj(s)

(16)
etc., and in general we have the following expression
%52 DR s) -
(28 + 5% 45 1) j(252 = 2) (i = D)(4s> + 2s)];e§f‘1)(s) +

[G—1(6s2 + 25 + 1)~ 4(i=1)js —@;i‘—z)(1253 + 2)]R§i‘2)(s) +

[(i -DE-2)
2

(128 + 2= 20 = D — 2)] = 4 = 1)(i - 2)(i - 3)S]R§-i_3>(s) +
(20 ~ (G = 2 = 31t~ (i = i = 2)(F = 3)(i = 4)]R§-i s

17
wih R\V(2)=R;(z) and R¥(2)=0 for k<0. Since

129
R{(0) =ilgy, we obtain
., (Qi-n) , (u-i+2) , (=27 ,
45 = ; 4yt ; Gyt i3,
n—i+4) ,
+(P_i_éq*’*~~” (18)
i=0,1,-,2n

with ¢g; =1 and gj; =0 for k<0. Hence the elements of the jth

column of O, can be computed via the recurrence relation given in

as).
Remark: It can be shown that the transformation matrix @,

possesses some symimetric properties. Note that, from (10),

Ry (-9 =R () 19
Then we have
= -
On the other hand, consider the reciprocal transformation
sanj(sfl) - Zq;n(i$jsf an
i=0
Since
SRy =M s A (T s Y @)
=R, (s)
we have
C]:; = q;nﬂ‘,j 23)

The symmetric properties of @, given in (20) and (23)
considerably reduce the computational burden when algorithm 1 is
used. It is sufficient to compute only the leading (n+1)x
[(n+2)/2] submatrix of Q,.
determined via (20) and (23).

2. Algorithm 2
Consider the (7+1)th order discrete-time polynomial

The remaining elements are

n+l

D(z)= Y d;2' 24)
i=0
C(s) is then computed by
2 1
Cls)=(s2 = s+ p 2t 25)
st —s+1
n+l g .
= S dst -5+ )" (s 154 1) 26)
i=0

qZJ

n
an,i]T

Q”=[q8 q
q,’-':[q{)’f qir

For 0<i<n
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(8 =5+ (P s+ =P s+ )7 (5P +s+1)
R @7
(" —s+1D
Then we have from (10) and (11)
01 (0] |af
Q= 0|-|qi|+] 0], i=0,,2,n (28)
] [0 |0
The last term in (26) can be written as
s+ = (T +5+D (7 +5+1) 29
Hence we obtain
0 0 q,
apii=| 0 |+|ay|+| 0 (30)
q, 0 0

Equations (23) and (25) can be expressed in a compact form as
follows

0 - 0 0 e 0 O, qz
o"l=| o 0 {+|~0, Q|+ 0o - 0| @D
R q" 0 - 0 0 - 0

Algorithm given in (31) provides a simple procedure to successively
compute Q, s of various order starting from the initial condition

Qo =[1].

OI. EXAMPLES
Example 1: Consider the following third-order discrete-time
polynomial whichhasazeroat z=1 [2]

D(z)=035-0.15z-12z% +2° (32)

From (18), the 7x4 biquadratic transformation matrix is
computed as

1 111
-3 -1 13
6 2 2 6
0o=-7 -1 17
6 226
-3 -1 13
L1 11 1]
Then (7) leads to
c = 0d
33
= [0 09 54 35 54 09 o0 3
Hence we obtain
C(s)=0.95+5.45°3.55° + 5.45" +0.95° (34)

Example 2: Consider a fourth-order discrete-time polynomial
givenby [2]

MOl - 2% - AlAESs =2X H 15 &, Ml 2 & 2009. 2

D(z) =126 +0.75z —2.41z% - 0.62° + z* (35)

which has a zero z=1. From (18), the 9x5 biquadratic
transformation matrix is computed as

1 111 1
-4 -2 0 2 4
10 4 2 4 10
-16 -4 0 4 16
o={ 19 5 3 519
-16 -4 0 4 16
10 4 2 4 10
-4 -2 0 2 4
1 111 1}
Then
c=0d
=[0 -3.74 18.38 —9.56 36.46 -9.56 36)
1838 —3.74 0]
and we obtain

C(s) = -3.74s +18.38s* - 9.565° + 36.46s"

€p))
—-9.565" +18.38s° —3.745"

Example 3: Using algorithm 2, we can successively compute the
biquadratic transformation matrices as follows:

111
11 2 0 2
0, =M1, g={-1 1), &=| 3 1 3,
11 2 0 2
111
1 1 1 1]
-3 -1 1 3
6 2 2 6
O,=1-7 -1 1 7] etc.
6 2 2 6
3 -1 13
L1 1 1 1]
IV. CONCLUSIONS

This paper presented two efficient algorithms by which one can
compute the transformation matrix for a biquadratic transformation. It
was also shown that the transformation matrix possesses some useful
symmetric properties. Numerical examples were given to illustrate the
result of this paper.
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