AUTOMORPHISM GROUP OF THE TERNARY TETRACODE

  • Park, Young Ho (Department of Mathematics Kangwon National University)
  • Received : 2008.10.16
  • Published : 2009.12.30

Abstract

We study the group structure of the automorphism group of the ternary self-dual tetracode of length 4.

Keywords

References

  1. J. Balmaceda, R. Betty and F. Nemenzo, Mass formula for self-dual codes over $Z_{p^2}$ , Discrete Math, Vol 308, 2008, 2984-3002 https://doi.org/10.1016/j.disc.2007.08.024
  2. W. C Huffman, On the classification and enumeration of self-dual codes, Finite fields and their appl., Vol. 11, 451-490, 2005 https://doi.org/10.1016/j.ffa.2005.05.012
  3. Hungerford, Algebra, Springer-Verlag, New York, 1974,
  4. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
  5. C. L. Mallows, V. Pless and N. J. A Sloane, Self-dual codes over GF(3), Siam J. Appl. Math., Vol 31, 1976.
  6. K. Nagata, F. Nemenzo and H. Wada, The number of self-dual codes over $Z_{p^3}$ , Des. Codes Cryptogr., Vol 50, 2009, 291-303 https://doi.org/10.1007/s10623-008-9232-4
  7. G. Nebe, E. Rains, and N.J.A. Sloane, Self-dual codes and Invariant Theory, Springer, Berlin, 2006
  8. Y. H. Park, Modular independence and generator matrices for codes over $Z_m$, Des. Codes Cryptogr, Vol 50, 2009, 147-162. https://doi.org/10.1007/s10623-008-9220-8
  9. V. Pless, The number of isotropic subspaces in a finite geometry, Rend Cl. Scienze fisiche, Vol 39, 1965, 418-421.
  10. V. Pless, On the uniqueness of the Golay codes, J. Comb. Theory, Vol 5, 1968, 215-228 https://doi.org/10.1016/S0021-9800(68)80067-5
  11. E. Rains and N. J. A. Sloane, Self-dual codes, in the Handbook of Coding Theory, V. S. Pless and W. C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294.