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AUTOMORPHISM GROUP OF THE TERNARY

TETRACODE

Young Ho Park

Abstract. We study the group structure of the automorphism
group of the ternary self-dual tetracode of length 4.

1. Introduction

Let R be a ring. A linear code of length n over R is a R-submodule
of Rn. We define an inner product on Rn by (x, y) =

∑n
i=1 xiyi where

x = (x1, · · · , xn) and y = (y1, · · · , yn). The dual code C⊥ of a code C of
length n is defined to be C⊥ = {y ∈ Rn | (y, x) = 0 for all x ∈ C}. C is
self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.

When considering code classification, a notion of equivalence is nec-
essary. An n × n matrix with coefficients in R is said to be monomial
if there is exactly one nonzero entry in each row and column. The set
of all invertible monomial transformations is denoted by M = Mn(R).
A monomial matrix is called a permutation matrix if the only nonzero
entry in each row and column is 1. Any monomial matrix Mn can be
uniquely written as M = PD or M = DP , where P is a permutation
matrix and D is a diagonal matrix. A monomial matrix M acts on the
elements x ∈ Rn as x 7→ xM and hence on codes. Two codes C1 and
C2 are permutation equivalent if there is a permutation matrix P such
that C1P = C2. There is a more general equivalence. Two codes C1 and
C2 are (monomially) equivalent if there exists an invertible monomial
matrix M such that C1M = C2. Note that if C1 and C2 are monomially
equivalent codes over Z3 and if C1 is self-orthogonal, then so is C2. The
automorphism group of a code C of length n over R is the set of all
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monomial transformations M such that CM = C:

Aut(C) = {M ∈M | CM = M}

As described in [11], self-dual codes are an important class of lin-
ear codes, both theoretically and for practical reasons. Self-dual codes
have received an enormous research effort. One of the most fundamental
problem on self-dual codes is to classify them. See [2] for recent results.
Such classification heavily relies on the knowledge of the so-called mass
formula, i.e., counting formula for self-dual codes, and the sizes of auto-
morphism groups. For example, the following mass formula for ternary
codes of length n is well-known ([9, 10, 4]).

Theorem 1.1. There exists a ternary self-dual code of length n if
and only if n is divisible by 4. In this case, the number of self-dual code
of length n is given by

2

n
2
−1∏

i=1

(3i + 1).

Suppose that C1, · · · , Cr are all inequivalent ternary self-dual codes
of length n. Then

(1) 2

n
2
−1∏

i=1

(3i + 1) =
r∑

j=1

|Mn(Z3)|
|Aut(Ci)| .

Thus the classification comes down to constructing inequivalent self-dual
codes C1, · · · , Cr which meets the equality (1). See [7] for details.

Recently, codes over Zm are studied in many places (see [8],[1], [6]).
Classification of self-dual codes over these rings requires not just the
size of automorphism groups of codes over the fields Zp but also the
knowledge of their subgroups. This will be exploited in the forthcoming
papers. However, the automorphism group Aut(T ) of the tetracode T
is given incorrectly in [7] and [11], which motivated this article. The
results of this article can be used in classifying ternary self-dual codes
of length a multiple of 4 over the rings Z3m.
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2. Ternary tetracode

The tetracode is a ternary code T with generator matrix(
1 0 1 1
0 1 1 2

)
.

It is easy to see that T is a self-dual code with 9 elements

T = {0000, 0112, 0221, 1011, 1120, 1202, 2022, 2101, 2210}
and any self-dual code of length 4 is equivalent to T . The automorphism
group Aut(T ) will be denoted by G. The mass formula (1) with n = 4
gives

(2) 2× (3 + 1) =
r∑

j=1

24 · (4!)

|Aut(Ci)| .

Since there exists a unique inequivalent ternary code T of length 4, we
have that

8 =
24 · (4!)

|Aut(T )|
which gives that G = Aut(T ) has order 48. See [5] for the classification
of ternary self-dual codes of small length.

Theorem 2.1. G can be generated by two elements

b =

(
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

)
, c =

(
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

)
.

Proof. Note that the actions of b and c are given by

(a1, a2, a3, a4)b = (a2, a3, a4,−a1), (a1, a2, a3, a4)c = (a3, a2, a4, a1)

and T is invariant under b and c. It is easy to check that b4 = −I4, |b| =
8 and |c| = 3. Therefore, the subgroup H generated by b and c contains
at least 24 distinct elements bicj where 0 ≤ i ≤ 7, 0 ≤ j ≤ 2. Note that
(a1, a2, a3, a4)cb = (a2, a4, a1,−a3) and that bicj acts on (a1, a2, a3, a4)
by a permutation of coordinates and the sign changes. Only when i = 1
or 7, the action of bicj contains exactly one sign change. Now it is
straightforward to check that cb 6= bicj for i = 1, 7 and j = 0, 1, 2.
Hence H contains more than 24 elements and thus H = G.

We used Theorem 2.1 to identify all elements of G given in Table 1.
We also computed the conjugacy classes of G given in Table 2.
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Table 1. Elements of G

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)1

1

,

(
1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0

)3

2

,

(
1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

)2

3

,

(
1 0 0 0
0 0 0 −1
0 1 0 0
0 0 −1 0

)3

4(
1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1

)2

5

,

(
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

)2

6

,

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

)2

7

,

(
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

)8

8

,

(
0 1 0 0
0 0 0 1
1 0 0 0
0 0 −1 0

)8

9

,

(
0 1 0 0
0 0 0 −1
0 0 −1 0
1 0 0 0

)6

10

,

(
0 1 0 0
0 0 −1 0
−1 0 0 0
0 0 0 1

)3

11

,

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)4

12(
0 0 1 0
1 0 0 0
0 0 0 −1
0 1 0 0

)8

13

(
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

)3

14

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)4

15

(
0 0 1 0
0 0 0 −1
0 −1 0 0
−1 0 0 0

)8

16(
0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

)2

17

(
0 0 1 0
−1 0 0 0
0 1 0 0
0 0 0 −1

)6

18

(
0 0 0 1
1 0 0 0
0 0 −1 0
0 −1 0 0

)6

19

(
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

)3

20(
0 0 0 1
0 0 1 0
−1 0 0 0
0 1 0 0

)8

21

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)4

22

(
0 0 0 1
0 −1 0 0
0 0 1 0
1 0 0 0

)2

23

(
0 0 0 1
−1 0 0 0
0 −1 0 0
0 0 −1 0

)8

24

(
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

)8

25

(
0 0 0 −1
0 1 0 0
0 0 −1 0
−1 0 0 0

)2

26

(
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)4

27

(
0 0 0 −1
0 0 −1 0
1 0 0 0
0 −1 0 0

)8

28(
0 0 0 −1
0 −1 0 0
−1 0 0 0
0 0 −1 0

)6

29

(
0 0 0 −1
−1 0 0 0
0 0 1 0
0 1 0 0

)3

30

(
0 0 −1 0
1 0 0 0
0 −1 0 0
0 0 0 1

)3

31

(
0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 −1

)2

32(
0 0 −1 0
0 0 0 1
0 1 0 0
1 0 0 0

)8

33

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)4

34

(
0 0 −1 0
0 −1 0 0
0 0 0 −1
−1 0 0 0

)6

35

(
0 0 −1 0
−1 0 0 0
0 0 0 1
0 −1 0 0

)8

36(
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

)4

37

(
0 −1 0 0
0 0 1 0
1 0 0 0
0 0 0 −1

)6

38

(
0 −1 0 0
0 0 0 1
0 0 1 0
−1 0 0 0

)3

39

(
0 −1 0 0
0 0 0 −1
−1 0 0 0
0 0 1 0

)8

40(
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 0

)8

41

(
0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1

)2

42

( −1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

)2

43

( −1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)2

44( −1 0 0 0
0 0 0 1
0 −1 0 0
0 0 1 0

)6

45

( −1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

)2

46

( −1 0 0 0
0 0 −1 0
0 0 0 1
0 1 0 0

)6

47

( −1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)2

48

Notation: Ai
j indicates that the matrix A will be denoted by gj or

sometimes simply by j and the order of gj is i.
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Table 2. Conjugacy classes of G

Class Elements |Ci| |g| (g ∈ Ci)
C1 1 1 1
C2 2,4,11,14,20,30,31,39 8 3
C3 3,5,6,7,17,23,26,32,42,43,44,46 12 2
C4 8,13,24,28,33,40 6 8
C5 9,16,21,25,36,41 6 8
C6 10,18,19,29,35,38,45,47 8 6
C7 12,15,22,27,34,37 6 4
C8 48 1 2

3. Group Structure of G

Table 1 gives the class equation for G:

(3) 48 = 1 + 1 + 6 + 6 + 6 + 8 + 8 + 12.

Theorem 3.1. The center of G is {I4,−I4}
Proof. This follows from the table of conjugacy classes.

Lemma 3.2. [3] Suppose H is a p-subgroup of any group G. Then

[NG(H) : H] ≡ [G : H] (mod p).

Take any subgroup H of order 8 of G. By the previous lemma

[NG(H) : H] ≡ 0 (mod 2).

Since the possibilities for |NG(H)| are 8, 16, or 24, this implies that
|NG(H)| = 16. This gives the following theorem.

Theorem 3.3. Let H be any subgroup of order 8. Then any normal-
izer of H has order 16, and hence it is a Sylow 2-subgroup of G.

The number N2 of Sylow 2-subgroups satisfies N2 ≡ 1 (mod 2), N2 | 3
so that the possibilities are N2 = 1, 3. Using Theorem 3.3, we can obtain
three Sylow 2-subgroups as follows.

P1 = NG(〈8〉) = {1, 3, 8, 12, 15, 17, 22, 24, 25, 27, 32, 34, 37, 41, 46, 48},
P2 = NG(〈13〉) = {1, 5, 9, 12, 13, 15, 22, 23, 26, 27, 34, 36, 37, 40, 44, 48},
P3 = NG(〈28〉) = {1, 6, 7, 12, 15, 16, 21, 22, 27, 28, 33, 34, 37, 42, 43, 48}.
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Since there are 8 elements of order 3, we see that Sylow 3-subgroups are
the following four subgroups:

Q1 = {1, 2, 4}, Q2 = {1, 11, 31},
Q3 = {1, 14, 20}, Q4 = {1, 30, 39}.

We summarize the results about Sylow subgroups.

Theorem 3.4. G has four Sylow 3-subgroups of order 3 and three
Sylow 2-subgroups of order 16. Thus no Sylow subgroups are normal.

Let

i = g22 =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
, j = g34 =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
,

c = g20 =

(
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

)
, d = g46 =

( −1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

)
.

We have the following relations about these elements.

i2 = j2 = −I, ji = i3j,(4)

c3 = I, ci = jc, cj = ijc(5)

d2 = I, di = ijd, dj = i2jd, dc = ijc2d(6)

The equation (4) shows that the subgroup

K = 〈i, j〉 = {iijj | 0 ≤ i ≤ 3, 0 ≤ j ≤ 1}
is isomorphic to the quaternion group of order 8. It turns out that

K = C1 ∪ C8 ∪ C7

and hence K is a normal subgroup of G. The equation (5) shows that
the set

(7) N = {iijjcc | 0 ≤ i ≤ 3, 0 ≤ j ≤ 1, 0 ≤ c ≤ 2}
is closed and hence a subgroup of G of order 24, which must be normal.

Theorem 3.5. N is the unique subgroup of order 24 and

N = C1 ∪ C8 ∪ C2 ∪ C6 ∪ C7.

Proof. A normal subgroup is a union of conjugacy classes including
C1. The only way to get a normal subgroup N ′ of order 24 is by the
summation 24 = 1 + 1 + 6 + 8 + 8. Thus N ′ is a union of N1 = C1 ∪
C8 ∪ C2 ∪ C6 and one of C4, C5 or C7. We find that g48g40 = g9 ∈
(C8)(C4) ∩ C5 and g48g41 = g8 ∈ (C8)(C5) ∩ C4. These mean that
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N1∪C4 and N1∪C5 are not closed, and hence not a subgroup. Therefore,
N ′ must be N1 ∪ C7 and it is the unique subgroup of order 24, namely
N ′ = N .

In [7] and [11], it is incorrectly given that G = 2.S4, where S4 is the
symmetric group of 4 letters. To see this, just notice that the center of
N is {g1, g48}, while S4 has the trivial center.

Finally we give a convenient presentation of G by generators and
relations. Note that d ∈ C3 so that d /∈ N . Thus G = N ∪ Nd. This
together with the equation (7) gives the following theorem.

Theorem 3.6. Let i, j, c,d as above equations (4),(5) and (6). Then

G = {iijjccdd | 0 ≤ i ≤ 4, 0 ≤ j ≤ 1, 0 ≤ c ≤ 2, 0 ≤ d ≤ 1}.
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