Korean J. Math. 17 (2009), No. 4, pp. 487-493

AUTOMORPHISM GROUP OF THE TERNARY TETRACODE

Young Ho Park

ABSTRACT. We study the group structure of the automorphism group of the ternary self-dual tetracode of length 4.

1. Introduction

Let R be a ring. A linear code of length n over R is a R-submodule of \mathbb{R}^n . We define an inner product on \mathbb{R}^n by $(x, y) = \sum_{i=1}^n x_i y_i$ where $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$. The dual code \mathbb{C}^{\perp} of a code C of length n is defined to be $\mathbb{C}^{\perp} = \{y \in \mathbb{R}^n \mid (y, x) = 0 \text{ for all } x \in C\}$. C is self-orthogonal if $\mathbb{C} \subset \mathbb{C}^{\perp}$ and self-dual if $\mathbb{C} = \mathbb{C}^{\perp}$.

When considering code classification, a notion of equivalence is necessary. An $n \times n$ matrix with coefficients in R is said to be monomial if there is exactly one nonzero entry in each row and column. The set of all invertible monomial transformations is denoted by $\mathcal{M} = \mathcal{M}_n(R)$. A monomial matrix is called a *permutation matrix* if the only nonzero entry in each row and column is 1. Any monomial matrix \mathcal{M}_n can be uniquely written as M = PD or M = DP, where P is a permutation matrix and D is a diagonal matrix. A monomial matrix M acts on the elements $x \in \mathbb{R}^n$ as $x \mapsto xM$ and hence on codes. Two codes C_1 and C_2 are *permutation equivalent* if there is a permutation matrix P such that $C_1P = C_2$. There is a more general equivalence. Two codes C_1 and C_2 are *(monomially) equivalent* if there exists an invertible monomial matrix M such that $C_1M = C_2$. Note that if C_1 and C_2 are monomially equivalent codes over \mathbb{Z}_3 and if C_1 is self-orthogonal, then so is C_2 . The *automorphism group* of a code C of length n over R is the set of all

Received October 16, 2008. Revised November 29, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 95A.

Key words and phrases: self-dual code, tetra code, automorphism group.

Young Ho Park

monomial transformations M such that CM = C:

$$\operatorname{Aut}(C) = \{ M \in \mathcal{M} \mid CM = M \}$$

As described in [11], self-dual codes are an important class of linear codes, both theoretically and for practical reasons. Self-dual codes have received an enormous research effort. One of the most fundamental problem on self-dual codes is to classify them. See [2] for recent results. Such classification heavily relies on the knowledge of the so-called *mass* formula, i.e., counting formula for self-dual codes, and the sizes of automorphism groups. For example, the following mass formula for ternary codes of length n is well-known ([9, 10, 4]).

THEOREM 1.1. There exists a ternary self-dual code of length n if and only if n is divisible by 4. In this case, the number of self-dual code of length n is given by

$$2\prod_{i=1}^{\frac{n}{2}-1} (3^i + 1)$$

Suppose that C_1, \dots, C_r are all inequivalent ternary self-dual codes of length n. Then

(1)
$$2\prod_{i=1}^{\frac{n}{2}-1} (3^i + 1) = \sum_{j=1}^{r} \frac{|\mathcal{M}_n(\mathbb{Z}_3)|}{|\operatorname{Aut}(C_i)|}$$

Thus the classification comes down to constructing inequivalent self-dual codes C_1, \dots, C_r which meets the equality (1). See [7] for details.

Recently, codes over \mathbb{Z}_m are studied in many places (see [8],[1], [6]). Classification of self-dual codes over these rings requires not just the size of automorphism groups of codes over the fields \mathbb{Z}_p but also the knowledge of their subgroups. This will be exploited in the forthcoming papers. However, the automorphism group $\operatorname{Aut}(T)$ of the tetracode Tis given incorrectly in [7] and [11], which motivated this article. The results of this article can be used in classifying ternary self-dual codes of length a multiple of 4 over the rings \mathbb{Z}_{3m} .

488

2. Ternary tetracode

The tetracode is a ternary code T with generator matrix

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}.$$

It is easy to see that T is a self-dual code with 9 elements

$$T = \{0000, 0112, 0221, 1011, 1120, 1202, 2022, 2101, 2210\}$$

and any self-dual code of length 4 is equivalent to T. The automorphism group $\operatorname{Aut}(T)$ will be denoted by G. The mass formula (1) with n = 4 gives

(2)
$$2 \times (3+1) = \sum_{j=1}^{r} \frac{2^4 \cdot (4!)}{|\operatorname{Aut}(C_i)|}.$$

Since there exists a unique inequivalent ternary code T of length 4, we have that

$$8 = \frac{2^4 \cdot (4!)}{|\operatorname{Aut}(T)|}$$

which gives that $G = \operatorname{Aut}(T)$ has order 48. See [5] for the classification of ternary self-dual codes of small length.

THEOREM 2.1. G can be generated by two elements

$$\mathbf{b} = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Proof. Note that the actions of \mathbf{b} and \mathbf{c} are given by

$$(a_1, a_2, a_3, a_4)\mathbf{b} = (a_2, a_3, a_4, -a_1), \quad (a_1, a_2, a_3, a_4)\mathbf{c} = (a_3, a_2, a_4, a_1)$$

and T is invariant under **b** and **c**. It is easy to check that $\mathbf{b}^4 = -I_4$, $|\mathbf{b}| = 8$ and $|\mathbf{c}| = 3$. Therefore, the subgroup H generated by **b** and **c** contains at least 24 distinct elements $\mathbf{b}^i \mathbf{c}^j$ where $0 \le i \le 7, 0 \le j \le 2$. Note that $(a_1, a_2, a_3, a_4)\mathbf{cb} = (a_2, a_4, a_1, -a_3)$ and that $\mathbf{b}^i \mathbf{c}^j$ acts on (a_1, a_2, a_3, a_4) by a permutation of coordinates and the sign changes. Only when i = 1or 7, the action of $\mathbf{b}^i \mathbf{c}^j$ contains exactly one sign change. Now it is straightforward to check that $\mathbf{cb} \ne \mathbf{b}^i \mathbf{c}^j$ for i = 1, 7 and j = 0, 1, 2. Hence H contains more than 24 elements and thus H = G.

We used Theorem 2.1 to identify all elements of G given in Table 1. We also computed the conjugacy classes of G given in Table 2.

Young Ho Park

TABLE 1. Elements of G

Automorphism group of the ternary tetracode

Class	Elements	Ci	$ g \ (g \in Ci)$
C1	1	1	1
C2	$2,\!4,\!11,\!14,\!20,\!30,\!31,\!39$	8	3
C3	3, 5, 6, 7, 17, 23, 26, 32, 42, 43, 44, 46	12	2
C4	8,13,24,28,33,40	6	8
C5	9,16,21,25,36,41	6	8
C6	$10,\!18,\!19,\!29,\!35,\!38,\!45,\!47$	8	6
C7	12,15,22,27,34,37	6	4
C8	48	1	2

TABLE 2. Conjugacy classes of G

3. Group Structure of G

Table 1 gives the class equation for G:

(3) 48 = 1 + 1 + 6 + 6 + 6 + 8 + 8 + 12.

THEOREM 3.1. The center of G is $\{I_4, -I_4\}$

Proof. This follows from the table of conjugacy classes.

LEMMA 3.2. [3] Suppose H is a p-subgroup of any group G. Then

 $[N_G(H):H] \equiv [G:H] \pmod{p}.$

Take any subgroup H of order 8 of G. By the previous lemma

$$[N_G(H):H] \equiv 0 \pmod{2}.$$

Since the possibilities for $|N_G(H)|$ are 8, 16, or 24, this implies that $|N_G(H)| = 16$. This gives the following theorem.

THEOREM 3.3. Let H be any subgroup of order 8. Then any normalizer of H has order 16, and hence it is a Sylow 2-subgroup of G.

The number N_2 of Sylow 2-subgroups satisfies $N_2 \equiv 1 \pmod{2}$, $N_2 \mid 3$ so that the possibilities are $N_2 = 1, 3$. Using Theorem 3.3, we can obtain three Sylow 2-subgroups as follows.

$$\begin{split} P_1 &= N_G(\langle 8 \rangle) = \{1, 3, 8, 12, 15, 17, 22, 24, 25, 27, 32, 34, 37, 41, 46, 48\}, \\ P_2 &= N_G(\langle 13 \rangle) = \{1, 5, 9, 12, 13, 15, 22, 23, 26, 27, 34, 36, 37, 40, 44, 48\}, \\ P_3 &= N_G(\langle 28 \rangle) = \{1, 6, 7, 12, 15, 16, 21, 22, 27, 28, 33, 34, 37, 42, 43, 48\}. \end{split}$$

Young Ho Park

Since there are 8 elements of order 3, we see that Sylow 3-subgroups are the following four subgroups:

$$Q_1 = \{1, 2, 4\}, \qquad Q_2 = \{1, 11, 31\}, Q_3 = \{1, 14, 20\}, \qquad Q_4 = \{1, 30, 39\}.$$

We summarize the results about Sylow subgroups.

THEOREM 3.4. G has four Sylow 3-subgroups of order 3 and three Sylow 2-subgroups of order 16. Thus no Sylow subgroups are normal.

Let

$$\mathbf{i} = g_{22} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \qquad \mathbf{j} = g_{34} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
$$\mathbf{c} = g_{20} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \mathbf{d} = g_{46} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

We have the following relations about these elements.

(4) $\mathbf{i}^2 = \mathbf{j}^2 = -I, \quad \mathbf{j}\mathbf{i} = \mathbf{i}^3\mathbf{j},$

(5)
$$\mathbf{c}^3 = I, \quad \mathbf{ci} = \mathbf{jc}, \quad \mathbf{cj} = \mathbf{ijc}$$

(6)
$$\mathbf{d}^2 = I$$
, $\mathbf{d}\mathbf{i} = \mathbf{i}\mathbf{j}\mathbf{d}$, $\mathbf{d}\mathbf{j} = \mathbf{i}^2\mathbf{j}\mathbf{d}$, $\mathbf{d}\mathbf{c} = \mathbf{i}\mathbf{j}\mathbf{c}^2\mathbf{d}$

The equation (4) shows that the subgroup

$$K = \langle \mathbf{i}, \mathbf{j} \rangle = \{ \mathbf{i}^i \mathbf{j}^j \mid 0 \le i \le 3, \ 0 \le j \le 1 \}$$

is isomorphic to the quaternion group of order 8. It turns out that

$$K = C1 \cup C8 \cup C7$$

and hence K is a normal subgroup of G. The equation (5) shows that the set

(7) $N = \{ \mathbf{i}^{i} \mathbf{j}^{j} \mathbf{c}^{c} \mid 0 \le i \le 3, \ 0 \le j \le 1, 0 \le c \le 2 \}$

is closed and hence a subgroup of G of order 24, which must be normal.

THEOREM 3.5. N is the unique subgroup of order 24 and

$$N = C1 \cup C8 \cup C2 \cup C6 \cup C7.$$

Proof. A normal subgroup is a union of conjugacy classes including C1. The only way to get a normal subgroup N' of order 24 is by the summation 24 = 1 + 1 + 6 + 8 + 8. Thus N' is a union of $N_1 = C1 \cup C8 \cup C2 \cup C6$ and one of C4, C5 or C7. We find that $g_{48}g_{40} = g_9 \in (C8)(C4) \cap C5$ and $g_{48}g_{41} = g_8 \in (C8)(C5) \cap C4$. These mean that

492

 $N_1 \cup C4$ and $N_1 \cup C5$ are not closed, and hence not a subgroup. Therefore, N' must be $N_1 \cup C7$ and it is the unique subgroup of order 24, namely N' = N.

In [7] and [11], it is incorrectly given that $G = 2.S_4$, where S_4 is the symmetric group of 4 letters. To see this, just notice that the center of N is $\{g_1, g_{48}\}$, while S_4 has the trivial center.

Finally we give a convenient presentation of G by generators and relations. Note that $\mathbf{d} \in C3$ so that $\mathbf{d} \notin N$. Thus $G = N \cup N\mathbf{d}$. This together with the equation (7) gives the following theorem.

THEOREM 3.6. Let $\mathbf{i}, \mathbf{j}, \mathbf{c}, \mathbf{d}$ as above equations (4),(5) and (6). Then $G = \{\mathbf{i}^i \mathbf{j}^j \mathbf{c}^c \mathbf{d}^d \mid 0 \le i \le 4, \ 0 \le j \le 1, \ 0 \le c \le 2, \ 0 \le d \le 1\}.$

References

- J. Balmaceda, R. Betty and F. Nemenzo, Mass formula for self-dual codes over Z_{p²}, Discrete Math, Vol 308, 2008, 2984–3002
- [2] W. C Huffman, On the classification and enumeration of self-dual codes, Finite fields and their appl., Vol. 11, 451–490, 2005
- [3] Hungerford, Algebra, Springer-Verlag, New York, 1974,
- [4] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
- [5] C. L. Mallows, V. Pless and N. J. A Sloane, *Self-dual codes over GF(3)*, Siam J. Appl. Math., Vol 31, 1976.
- [6] K. Nagata, F. Nemenzo and H. Wada, The number of self-dual codes over Z_{p³}, Des. Codes Cryptogr., Vol 50, 2009, 291–303
- [7] G. Nebe, E. Rains, and N.J.A. Sloane, Self-dual codes and Invariant Theory, Springer, Berlin, 2006
- [8] Y. H. Park, Modular independence and generator matrices for codes over Z_m, Des. Codes Cryptogr, Vol 50, 2009, 147–162.
- [9] V. Pless, The number of isotropic subspaces in a finite geometry, Rend Cl. Scienze fisiche, Vol 39, 1965, 418–421.
- [10] V. Pless, On the uniqueness of the Golay codes, J. Comb. Theory, Vol 5, 1968, 215–228
- [11] E. Rains and N. J. A. Sloane, *Self-dual codes*, in the Handbook of Coding Theory, V. S. Pless and W. C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294.

Department of Mathematics Kangwon National University *E-mail*: yhpark@kangwon.ac.kr