AUTOMORPHISM GROUP OF THE TERNARY TETRACODE

Young Ho Park

Abstract

We study the group structure of the automorphism group of the ternary self-dual tetracode of length 4.

1. Introduction

Let R be a ring. A linear code of length n over R is a R-submodule of R^{n}. We define an inner product on R^{n} by $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ where $x=\left(x_{1}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, \cdots, y_{n}\right)$. The dual code C^{\perp} of a code C of length n is defined to be $C^{\perp}=\left\{y \in R^{n} \mid(y, x)=0\right.$ for all $\left.x \in C\right\}$. C is self-orthogonal if $C \subset C^{\perp}$ and self-dual if $C=C^{\perp}$.

When considering code classification, a notion of equivalence is necessary. An $n \times n$ matrix with coefficients in R is said to be monomial if there is exactly one nonzero entry in each row and column. The set of all invertible monomial transformations is denoted by $\mathcal{M}=\mathcal{M}_{n}(R)$. A monomial matrix is called a permutation matrix if the only nonzero entry in each row and column is 1 . Any monomial matrix M_{n} can be uniquely written as $M=P D$ or $M=D P$, where P is a permutation matrix and D is a diagonal matrix. A monomial matrix M acts on the elements $x \in R^{n}$ as $x \mapsto x M$ and hence on codes. Two codes C_{1} and C_{2} are permutation equivalent if there is a permutation matrix P such that $C_{1} P=C_{2}$. There is a more general equivalence. Two codes C_{1} and C_{2} are (monomially) equivalent if there exists an invertible monomial matrix M such that $C_{1} M=C_{2}$. Note that if C_{1} and C_{2} are monomially equivalent codes over \mathbb{Z}_{3} and if C_{1} is self-orthogonal, then so is C_{2}. The automorphism group of a code C of length n over R is the set of all

Received October 16, 2008. Revised November 29, 2008.
2000 Mathematics Subject Classification: 95A.
Key words and phrases: self-dual code, tetra code, automorphism group.
monomial transformations M such that $C M=C$:

$$
\operatorname{Aut}(C)=\{M \in \mathcal{M} \mid C M=M\}
$$

As described in [11], self-dual codes are an important class of linear codes, both theoretically and for practical reasons. Self-dual codes have received an enormous research effort. One of the most fundamental problem on self-dual codes is to classify them. See [2] for recent results. Such classification heavily relies on the knowledge of the so-called mass formula, i.e., counting formula for self-dual codes, and the sizes of automorphism groups. For example, the following mass formula for ternary codes of length n is well-known ($[9,10,4]$).

Theorem 1.1. There exists a ternary self-dual code of length n if and only if n is divisible by 4 . In this case, the number of self-dual code of length n is given by

$$
2 \prod_{i=1}^{\frac{n}{2}-1}\left(3^{i}+1\right)
$$

Suppose that C_{1}, \cdots, C_{r} are all inequivalent ternary self-dual codes of length n. Then

$$
\begin{equation*}
2 \prod_{i=1}^{\frac{n}{2}-1}\left(3^{i}+1\right)=\sum_{j=1}^{r} \frac{\left|\mathcal{M}_{n}\left(\mathbb{Z}_{3}\right)\right|}{\left|\operatorname{Aut}\left(C_{i}\right)\right|} . \tag{1}
\end{equation*}
$$

Thus the classification comes down to constructing inequivalent self-dual codes C_{1}, \cdots, C_{r} which meets the equality (1). See [7] for details.

Recently, codes over \mathbb{Z}_{m} are studied in many places (see [8], [1], [6]). Classification of self-dual codes over these rings requires not just the size of automorphism groups of codes over the fields \mathbb{Z}_{p} but also the knowledge of their subgroups. This will be exploited in the forthcoming papers. However, the automorphism group $\operatorname{Aut}(T)$ of the tetracode T is given incorrectly in [7] and [11], which motivated this article. The results of this article can be used in classifying ternary self-dual codes of length a multiple of 4 over the rings $\mathbb{Z}_{3 m}$.

2. Ternary tetracode

The tetracode is a ternary code T with generator matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

It is easy to see that T is a self-dual code with 9 elements

$$
T=\{0000,0112,0221,1011,1120,1202,2022,2101,2210\}
$$

and any self-dual code of length 4 is equivalent to T. The automorphism group $\operatorname{Aut}(T)$ will be denoted by G. The mass formula (1) with $n=4$ gives

$$
\begin{equation*}
2 \times(3+1)=\sum_{j=1}^{r} \frac{2^{4} \cdot(4!)}{\left|\operatorname{Aut}\left(C_{i}\right)\right|} . \tag{2}
\end{equation*}
$$

Since there exists a unique inequivalent ternary code T of length 4 , we have that

$$
8=\frac{2^{4} \cdot(4!)}{|\operatorname{Aut}(T)|}
$$

which gives that $G=\operatorname{Aut}(T)$ has order 48. See [5] for the classification of ternary self-dual codes of small length.

Theorem 2.1. G can be generated by two elements

$$
\mathbf{b}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \mathbf{c}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Proof. Note that the actions of \mathbf{b} and \mathbf{c} are given by

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mathbf{b}=\left(a_{2}, a_{3}, a_{4},-a_{1}\right), \quad\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mathbf{c}=\left(a_{3}, a_{2}, a_{4}, a_{1}\right)
$$

and T is invariant under \mathbf{b} and \mathbf{c}. It is easy to check that $\mathbf{b}^{4}=-I_{4},|\mathbf{b}|=$ 8 and $|\mathbf{c}|=3$. Therefore, the subgroup H generated by \mathbf{b} and \mathbf{c} contains at least 24 distinct elements $\mathbf{b}^{i} \mathbf{c}^{j}$ where $0 \leq i \leq 7,0 \leq j \leq 2$. Note that $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mathbf{c b}=\left(a_{2}, a_{4}, a_{1},-a_{3}\right)$ and that $\mathbf{b}^{i} \mathbf{c}^{j}$ acts on $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ by a permutation of coordinates and the sign changes. Only when $i=1$ or 7 , the action of $\mathbf{b}^{i} \mathbf{c}^{j}$ contains exactly one sign change. Now it is straightforward to check that $\mathbf{c b} \neq \mathbf{b}^{i} \mathbf{c}^{j}$ for $i=1,7$ and $j=0,1,2$. Hence H contains more than 24 elements and thus $H=G$.

We used Theorem 2.1 to identify all elements of G given in Table 1. We also computed the conjugacy classes of G given in Table 2.

Table 1. Elements of G

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{1}^{1}, \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)_{2}^{3}, \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)_{3}^{2}, \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)_{4}^{3} \\
& \left.\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{5}^{2}, \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)_{6}^{2}, \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{7}^{2}, \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)^{2}\right)_{8}^{8}, \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 \\
1 & 0 & 0 \\
1 & 1 \\
0 & 0 & 0
\end{array}\right)^{8} 00 . \quad\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)_{10}^{6}, \quad\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{11}^{3}, \quad\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)_{12}^{4} \\
& \left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)_{13}^{8} \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)_{14}^{3} \quad\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)_{15}^{4} \quad\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)_{16}^{8} \\
& \left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{17}^{2} \quad\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{18}^{6} \quad\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)_{19}^{6} \quad\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{20}^{3} \\
& \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 \\
0 & 0 & 1
\end{array} 0\right. \\
& \left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{25}^{8} \quad\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)_{26}^{2} \\
& \left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)_{27}^{4} \quad\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)_{28}^{8} \\
& \left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)^{6}{ }_{29} \quad\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)_{30}^{3} \quad\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{31}^{3} \quad\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{32} \\
& \left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)^{8} \quad\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)_{34}^{4} \quad\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right)_{35}^{6} \quad\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right)_{36} \\
& \left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)_{37}^{4} \quad\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{38}^{6} \quad\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)_{39}^{3} \quad\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)_{40}^{8} \\
& \left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0
\end{array}\right)_{41}^{8} \quad\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{42}^{2} \quad\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)_{43}^{2} \quad\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{44}^{2}
\end{aligned}
$$

Notation: A_{j}^{i} indicates that the matrix A will be denoted by g_{j} or sometimes simply by j and the order of g_{j} is i.

Table 2. Conjugacy classes of G

Class	Elements	$\|C i\|$	$\|g\|(g \in C i)$
$C 1$	1	1	1
$C 2$	$2,4,11,14,20,30,31,39$	8	3
$C 3$	$3,5,6,7,17,23,26,32,42,43,44,46$	12	2
$C 4$	$8,13,24,28,33,40$	6	8
$C 5$	$9,16,21,25,36,41$	6	8
$C 6$	$10,18,19,29,35,38,45,47$	8	6
$C 7$	$12,15,22,27,34,37$	6	4
$C 8$	48	1	2

3. Group Structure of G

Table 1 gives the class equation for G :

$$
\begin{equation*}
48=1+1+6+6+6+8+8+12 . \tag{3}
\end{equation*}
$$

Theorem 3.1. The center of G is $\left\{I_{4},-I_{4}\right\}$
Proof. This follows from the table of conjugacy classes.
Lemma 3.2. [3] Suppose H is a p-subgroup of any group G. Then

$$
\left[N_{G}(H): H\right] \equiv[G: H] \quad(\bmod p) .
$$

Take any subgroup H of order 8 of G. By the previous lemma

$$
\left[N_{G}(H): H\right] \equiv 0 \quad(\bmod 2) .
$$

Since the possibilities for $\left|N_{G}(H)\right|$ are 8,16 , or 24 , this implies that $\left|N_{G}(H)\right|=16$. This gives the following theorem.

Theorem 3.3. Let H be any subgroup of order 8. Then any normalizer of H has order 16, and hence it is a Sylow 2-subgroup of G.

The number N_{2} of Sylow 2-subgroups satisfies $N_{2} \equiv 1(\bmod 2), N_{2} \mid 3$ so that the possibilities are $N_{2}=1,3$. Using Theorem 3.3, we can obtain three Sylow 2 -subgroups as follows.

$$
\begin{aligned}
& P_{1}=N_{G}(\langle 8\rangle)=\{1,3,8,12,15,17,22,24,25,27,32,34,37,41,46,48\}, \\
& P_{2}=N_{G}(\langle 13\rangle)=\{1,5,9,12,13,15,22,23,26,27,34,36,37,40,44,48\}, \\
& P_{3}=N_{G}(\langle 28\rangle)=\{1,6,7,12,15,16,21,22,27,28,33,34,37,42,43,48\} .
\end{aligned}
$$

Since there are 8 elements of order 3, we see that Sylow 3 -subgroups are the following four subgroups:

$$
\begin{array}{ll}
Q_{1}=\{1,2,4\}, & Q_{2}=\{1,11,31\} \\
Q_{3}=\{1,14,20\}, & Q_{4}=\{1,30,39\}
\end{array}
$$

We summarize the results about Sylow subgroups.
Theorem 3.4. G has four Sylow 3-subgroups of order 3 and three Sylow 2-subgroups of order 16. Thus no Sylow subgroups are normal.

Let

$$
\begin{aligned}
& \mathbf{i}=g_{22}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{j}=g_{34}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \\
& \mathbf{c}=g_{20}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \mathbf{d}=g_{46}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

We have the following relations about these elements.

$$
\begin{align*}
& \mathbf{i}^{2}=\mathbf{j}^{2}=-I, \quad \mathbf{j} \mathbf{i}=\mathbf{i}^{3} \mathbf{j}, \tag{4}\\
& \mathbf{c}^{3}=I, \quad \mathbf{c i}=\mathbf{j} \mathbf{c}, \quad \mathbf{c j}=\mathbf{i} \mathbf{j} \mathbf{c} \tag{5}\\
& \mathbf{d}^{2}=I, \quad \mathbf{d i}=\mathbf{i j d}, \quad \mathbf{d} \mathbf{j}=\mathbf{i}^{2} \mathbf{j} \mathbf{d}, \quad \mathbf{d c}=\mathbf{i j c}^{2} \mathbf{d}
\end{align*}
$$

The equation (4) shows that the subgroup

$$
K=\langle\mathbf{i}, \mathbf{j}\rangle=\left\{\mathbf{i}^{i} \mathbf{j}^{j} \mid 0 \leq i \leq 3,0 \leq j \leq 1\right\}
$$

is isomorphic to the quaternion group of order 8. It turns out that

$$
K=C 1 \cup C 8 \cup C 7
$$

and hence K is a normal subgroup of G. The equation (5) shows that the set

$$
\begin{equation*}
N=\left\{\mathbf{i}^{i} \mathbf{j}^{j} \mathbf{c}^{c} \mid 0 \leq i \leq 3,0 \leq j \leq 1,0 \leq c \leq 2\right\} \tag{7}
\end{equation*}
$$

is closed and hence a subgroup of G of order 24 , which must be normal.
Theorem 3.5. N is the unique subgroup of order 24 and

$$
N=C 1 \cup C 8 \cup C 2 \cup C 6 \cup C 7 .
$$

Proof. A normal subgroup is a union of conjugacy classes including $C 1$. The only way to get a normal subgroup N^{\prime} of order 24 is by the summation $24=1+1+6+8+8$. Thus N^{\prime} is a union of $N_{1}=C 1 \cup$ $C 8 \cup C 2 \cup C 6$ and one of $C 4, C 5$ or $C 7$. We find that $g_{48} g_{40}=g_{9} \in$ $(C 8)(C 4) \cap C 5$ and $g_{48} g_{41}=g_{8} \in(C 8)(C 5) \cap C 4$. These mean that
$N_{1} \cup C 4$ and $N_{1} \cup C 5$ are not closed, and hence not a subgroup. Therefore, N^{\prime} must be $N_{1} \cup C 7$ and it is the unique subgroup of order 24, namely $N^{\prime}=N$.

In [7] and [11], it is incorrectly given that $G=2 . S_{4}$, where S_{4} is the symmetric group of 4 letters. To see this, just notice that the center of N is $\left\{g_{1}, g_{48}\right\}$, while S_{4} has the trivial center.

Finally we give a convenient presentation of G by generators and relations. Note that $\mathbf{d} \in C 3$ so that $\mathbf{d} \notin N$. Thus $G=N \cup N \mathbf{d}$. This together with the equation (7) gives the following theorem.

Theorem 3.6. Let $\mathbf{i}, \mathbf{j}, \mathbf{c}, \mathbf{d}$ as above equations (4),(5) and (6). Then $G=\left\{\mathbf{i}^{i} \mathbf{j}^{j} \mathbf{c}^{c} \mathbf{d}^{d} \mid 0 \leq i \leq 4,0 \leq j \leq 1,0 \leq c \leq 2,0 \leq d \leq 1\right\}$.

References

[1] J. Balmaceda, R. Betty and F. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$, Discrete Math, Vol 308, 2008, 2984-3002
[2] W. C Huffman, On the classification and enumeration of self-dual codes, Finite fields and their appl., Vol. 11, 451-490, 2005
[3] Hungerford, Algebra, Springer-Verlag, New York, 1974,
[4] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
[5] C. L. Mallows, V. Pless and N. J. A Sloane, Self-dual codes over GF(3), Siam J. Appl. Math., Vol 31, 1976.
[6] K. Nagata, F. Nemenzo and H. Wada, The number of self-dual codes over $\mathbb{Z}_{p^{3}}$, Des. Codes Cryptogr., Vol 50, 2009, 291-303
[7] G. Nebe, E. Rains, and N.J.A. Sloane, Self-dual codes and Invariant Theory, Springer, Berlin, 2006
[8] Y. H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_{m}, Des. Codes Cryptogr, Vol 50, 2009, 147-162.
[9] V. Pless, The number of isotropic subspaces in a finite geometry, Rend Cl. Scienze fisiche, Vol 39, 1965, 418-421.
[10] V. Pless, On the uniqueness of the Golay codes, J. Comb. Theory, Vol 5, 1968, 215-228
[11] E. Rains and N. J. A. Sloane, Self-dual codes, in the Handbook of Coding Theory, V. S. Pless and W. C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294.

Department of Mathematics
Kangwon National University
E-mail: yhpark@kangwon.ac.kr

