References
- S. Bell, Complex of the classical kernel functions of potential theory, Indiana Univ. Math. J., 44 (1995), 1337-1369.
- S. Bell, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J., 98 (1999), 187-207. https://doi.org/10.1215/S0012-7094-99-09805-8
- S. Bell, A Riemann surface attached to domains in the plane and complexity in potential theory, Houston J. Math., 26 (2000), 277-297.
- L. R. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. in Math. 85. (1991), 129-144. https://doi.org/10.1016/0001-8708(91)90052-9
- I. P. Goulden and D. M. Jackson, Transitive factorisation into transpositions and holomorphic mappings on the sphere, Proc. AMS 125. (1997), 51-60. https://doi.org/10.1090/S0002-9939-97-03880-X
- M. Jeong and M. Taniguchi, Bell representation of finitely connected planar domains, Proc. AMS., 131 (2003), 2325-2328. https://doi.org/10.1090/S0002-9939-02-06823-5
- M. Jeong and M. Taniguchi, Algebraic kernel functions and representation of planar domains, J. Korean Math. Soc., 40 (2003), 447-460. https://doi.org/10.4134/JKMS.2003.40.3.447
- M. Jeong and M. Taniguchi, The cofficient body of Bell representations of finitely connected planar domains, J. Math. Anal. Appl. 295 (2004), 620-632. https://doi.org/10.1016/j.jmaa.2004.03.043