수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 -

Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions -

  • 투고 : 2009.04.16
  • 심사 : 2009.05.12
  • 발행 : 2009.06.01

초록

수압파쇄기술은 가스나 석유, 지열 등 자원추출을 하기 위해 다양한 분야에서 전세계적으로 응용되고 있는 기술이다. 이러한 수압파쇄 작업 시 복수의 균열이 필수적으로 발생하여 균열간 기계적인 상호작용을 유발하는데 이러한 상호작용은 수압파쇄시 얻어질 수 있는 결과(균열 폭, 균열 길이, 보어홀 내 압력)에 큰 영향을 끼치게 된다. 수치해석기법인 경계병치법은 이러한 균열간의 역학적 상호작용을 고려하는데 유효한 수치해석적 기법으로 개발이 되고 있으나 응력확대계수를 계산하는 해석식과의 비교 등을 통한 검증이 필요하다. 이를 위해 무한평면에 일축 인장 응력과 전단응력이 작용하는 단일균열의 경우 및 임의의 두 균열이 존재하는 경우의 응력확대계수 및 균열폭 해석식과 본 수치해석기법을 통해 얻은 값을 비교하였다. 그 결과, 본 연구에서 제시한 경계병치법은 해석식과 상당히 근접한 결과를 나타내어, 균열간의 기계적인 상호작용을 고려하는데 유효함을 검증하였으며, 추후 수압파쇄 시 설계에 필요한 균열폭 등의 변수를 계산하는데 사용할 수 있음을 나타내었다.

Hydraulic fracturing technology has been widely applied in the industry for the recovery of the natural resources such as gas, oil and geothermal heat from hot dry rock. During hydraulic fracturing stimulation, multiple cracks are created resulting in mechanical interaction between cracks. Such an interaction influences obtaining hydraulic fracturing key parameters (crack opening, length, and borehole net pressure). The boundary collocation method (BCM) has been proved to be very effective in considering mechanical interaction. However, for better confidence, it needs to be verified by comparison with analytical solutions such as stress intensity factors. In this paper, three cases, single fracture in remote uniaxial tension, single fracture in remote shear stress field and two arbitrary segments in an infinite plane loaded at infinity are considered. As a result, the BCM is proved to be valid technique to consider mechanical interaction between cracks and can be used to estimate the hydraulic fracturing parameters such as opening of the fracture, and so on.

키워드

참고문헌

  1. Astakhov, D.K., Sim, Y.J. and Germanovich, L.N. (2000), MultiFrac2000, User Manual, Georgia Institute of Technology, p 235.
  2. Gladwell, G.M.L. and England, A.H. (1977), Orthogonal Polynomial Solutions to Some Mixed Boundary-Value Problems in Elasticity Theory, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 30, pp. 175-185. https://doi.org/10.1093/qjmam/30.2.175
  3. Hocking, G. and Wells, S. (2002), Design, Construction and Installation Verification of a 1200 Long Iron Permeable Reactive Barrier, 8th Annual Florida Remediation Conference, p. 9.
  4. McCartney, L.N. and Gorley, T.A.E. (1987), Complex Variable Method of Calculating Stress Intensity Factors for Cracks in Plates, Numerical Methods in Fracture Mechanics, Proceeding of the 4th International Conference, San Antonio, pp. 55-72.
  5. Naceur, K.B. and Roegiers, J.-C. (1990), Design of Fracturing Treatments in Multilayered Formations, SPE Production Engineering, pp. 21-26.
  6. Savruk, M.P. and Datsyshin, A.P. (1973), On the Limiting State of Equilibrium of a Plate Weakened by Two Arbitrarily-Oriented Cracks, Physico-Mechanical Institute, Academy of Sciences of the Ukrainian SSR, L'vov. Translated from Prikladnaya Mechanika, Vol. 9, No. 7, pp. 49-56.
  7. Sim, Y.J. and Kim, H.T. (2005), A Study on the Interaction of Segmented Hydraulic Fractures, Journal of the Korean Geotechnical Society, Vol. 21, No. 9, pp. 45-52.
  8. Sim, Y.J., Kim, H.T. and Germanovich, L.N. (2006), Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing, Journal of the Korean Geo-Environmental Society, Vol. 7, No. 2, pp. 43-53.
  9. Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineers, 3rd Ed., p. 696.