A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee (Department of Computer Science ChungWoon University)
  • Received : 2009.06.22
  • Accepted : 2009.08.21
  • Published : 2009.09.30

Abstract

We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

Keywords

References

  1. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  2. K. Joag-Dev and F. Proschan Negative association of random variables with applications, Ann. Statist. 11 (1983), 286-295 https://doi.org/10.1214/aos/1176346079
  3. T. S. Kim, M. H. Ko, and Y. K. Choi, The invariance principle for linear multi-parameter stochastic processes generated by associated fields, Statist. Probab. Lett. 78 (2008), 3298-3303. https://doi.org/10.1016/j.spl.2008.06.022
  4. P. Matula A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
  5. M. Marinucci and S. Poghosyan, Asymptotics for linear random fields, Probab. Lett. 51 (2001), 131-141. https://doi.org/10.1016/S0167-7152(00)00139-5
  6. C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Inequalities in Probability and Statistics, Tong, Y.L., ed., IMS Lecture-Notes-Monograph Series, Hayward, CA, Vol. 5 (1984), 127-140.
  7. P. C. B. Phillips and V. Solo, Asymptotics for linear processes, Ann. Statist. 20 (1992), 971-1001. https://doi.org/10.1214/aos/1176348666
  8. S. Poghosyan and S. Roelly, Invariance principle for martingale-difference random fields, Statist. Probab. Lett. 38 (1998), 235-245 https://doi.org/10.1016/S0167-7152(98)00020-0
  9. M. L. Straf Weak convergence of stochastic processes with several parameters, Six Berkeley Symposium on Mathematical Statistics and Probability. 11 (1970), 187-221
  10. C. G. Roussas Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), 152-173. https://doi.org/10.1006/jmva.1994.1039
  11. C. Su, L. C. Zhao, and Y. B. Wang,The moment inequalities and weak convergence for negatively associated sequences, Sci. China 40A, (1997), 172-182
  12. L. X. Zhang, A functional central limit theorem for asymptotically negatively dependent random variables, Acta. Math. Hungar. 86 (2000), 237-259 https://doi.org/10.1023/A:1006720512467