References
- M. Amyari and M.S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77 (2006), 1-9. https://doi.org/10.1007/s11005-005-0042-6
- C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica (to appear).
- C. Baak, Y. Cho, M. Han, M.S. Moslehian, Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, (preprint).
-
C. Baak, Isomorphisms between
$C^{\ast}$ -ternary algebras, J. Math. Anal. Appl. (to appear). - P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung , Aequationes Math. 62 (2001), 303-309. https://doi.org/10.1007/PL00000156
- A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), 425-430. https://doi.org/10.1090/S0002-9939-98-04060-X
-
G. Isac and Th.M. Rassias, Stability of
$\psi$ -additive mappings : Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228. https://doi.org/10.1155/S0161171296000324 - S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), 221-226. https://doi.org/10.1006/jmaa.1996.0433
- S. Jung and B. Chung, Remarks on Hyers-Ulam stability of Butler-Rassias functional equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A - Math. Anal. 13 (2006), 193-197.
- R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997), A203-A225. https://doi.org/10.1088/0264-9381/14/1A/017
- R. Kerner, Ternary algebraic structures and their applications in physics(preprint).
- Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197-200.
-
M. Mirzavaziri and M.S. Moslehian, Automatics continuity of
$\sigma$ -derivations on$C^{\ast}$ -algebras, Proc. Amer. Math. Soc. 134 (2006), 3319-3327. https://doi.org/10.1090/S0002-9939-06-08376-6 - M.S. Moslehian and L. Szekelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Results Math. (to appear).
- C. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 2501-2504. https://doi.org/10.1090/S0002-9939-02-06886-7
-
C. Park, On an approximate automorphism on a
$C^{\ast}$ -algebra, Proc. Amer. Math. Soc. 132 (2004), 1739-1745. https://doi.org/10.1090/S0002-9939-03-07252-6 -
C. Park, Homomorphisms between Poisson
$JC^{\ast}$ -algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97. https://doi.org/10.1007/s00574-005-0029-z - C. Park, A generalized Jensen's mapping and linear mappings between Banach modules, Bull. Braz. Math. Soc. 36 (2005), 333-362. https://doi.org/10.1007/s00574-005-0043-1
-
C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between
$C^{\ast}$ -algebras, Bull. Belgian Math. Soc.-Simon Stevin (to appear). -
C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between
$C^{\ast}$ -algebras, Math. Nachr. (to appear). - Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th.M. Rassias,Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
- Th.M. Rassias,The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
- Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
- Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130. https://doi.org/10.1023/A:1006499223572
- Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
- Th.M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200. https://doi.org/10.1007/s00010-003-2684-8
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
- H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143. https://doi.org/10.1016/0001-8708(83)90083-X