ISOMORPHISMS AND DERIVATIONS IN C*-TERNARY ALGEBRAS

  • An, Jong Su (Department of Mathematics Education Pusan National University) ;
  • Park, Chunkil (Department of Mathematics Hanyang University)
  • Received : 2009.02.20
  • Published : 2009.03.30

Abstract

In this paper, we investigate isomorphisms between $C^*$-ternary algebras and derivations on $C^*$-ternary algebras associated with the Cauchy-Jensen functional equation $$2f(\frac{x+y}{2}+z)=f(x)+f(y)+2f(z)$$, which was introduced and investigated by Baak in [2].

Keywords

References

  1. M. Amyari and M.S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77 (2006), 1-9. https://doi.org/10.1007/s11005-005-0042-6
  2. C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica (to appear).
  3. C. Baak, Y. Cho, M. Han, M.S. Moslehian, Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, (preprint).
  4. C. Baak, Isomorphisms between $C^{\ast}$-ternary algebras, J. Math. Anal. Appl. (to appear).
  5. P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
  6. W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161. https://doi.org/10.1007/s00010-005-2775-9
  7. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  8. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  9. A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung , Aequationes Math. 62 (2001), 303-309. https://doi.org/10.1007/PL00000156
  10. A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
  11. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
  12. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  13. D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), 425-430. https://doi.org/10.1090/S0002-9939-98-04060-X
  14. G. Isac and Th.M. Rassias, Stability of $\psi$-additive mappings : Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228. https://doi.org/10.1155/S0161171296000324
  15. S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), 221-226. https://doi.org/10.1006/jmaa.1996.0433
  16. S. Jung and B. Chung, Remarks on Hyers-Ulam stability of Butler-Rassias functional equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A - Math. Anal. 13 (2006), 193-197.
  17. R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997), A203-A225. https://doi.org/10.1088/0264-9381/14/1A/017
  18. R. Kerner, Ternary algebraic structures and their applications in physics(preprint).
  19. Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197-200.
  20. M. Mirzavaziri and M.S. Moslehian, Automatics continuity of $\sigma$-derivations on $C^{\ast}$-algebras, Proc. Amer. Math. Soc. 134 (2006), 3319-3327. https://doi.org/10.1090/S0002-9939-06-08376-6
  21. M.S. Moslehian and L. Szekelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Results Math. (to appear).
  22. C. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 2501-2504. https://doi.org/10.1090/S0002-9939-02-06886-7
  23. C. Park, On an approximate automorphism on a $C^{\ast}$-algebra, Proc. Amer. Math. Soc. 132 (2004), 1739-1745. https://doi.org/10.1090/S0002-9939-03-07252-6
  24. C. Park, Homomorphisms between Poisson $JC^{\ast}$-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97. https://doi.org/10.1007/s00574-005-0029-z
  25. C. Park, A generalized Jensen's mapping and linear mappings between Banach modules, Bull. Braz. Math. Soc. 36 (2005), 333-362. https://doi.org/10.1007/s00574-005-0043-1
  26. C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between $C^{\ast}$-algebras, Bull. Belgian Math. Soc.-Simon Stevin (to appear).
  27. C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between $C^{\ast}$-algebras, Math. Nachr. (to appear).
  28. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  29. Th.M. Rassias,Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
  30. Th.M. Rassias,The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
  31. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
  32. Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130. https://doi.org/10.1023/A:1006499223572
  33. Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
  34. Th.M. Rassias and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
  35. J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200. https://doi.org/10.1007/s00010-003-2684-8
  36. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
  37. S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
  38. H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143. https://doi.org/10.1016/0001-8708(83)90083-X