DOI QR코드

DOI QR Code

Effects of Platycodin D on Gene Expressions of Pro-adipogenic and Anti-adipogenic Regulators in 3T3-L1 Cells

3T3-L1 세포에서 지방세포형성 유도조절자 및 억제조절자의 발현에 대한 platycodin D의 효과

  • Lee, Hae-Yong (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Kang, Ryun-Hwa (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Cho, Soo-Hyun (Department of Family Medicine, Yongsan Hospital) ;
  • Kim, Sung-Su (Department of Anatomy, Chung-Ang University College of Medicine) ;
  • Kim, Yeong-Shik (College of Pharmacy, Seoul National University) ;
  • Yoon, Yoo-Sik (Department of Microbiology, Chung-Ang University College of Medicine)
  • 이해용 (중앙대학교 의과대학 미생물학교실) ;
  • 강련화 (중앙대학교 의과대학 미생물학교실) ;
  • 조수현 (중앙대학교 용산병원 가정의학과) ;
  • 김성수 (중앙대학교 의과대학 해부학교실) ;
  • 김영식 (서울대학교 약학대학) ;
  • 윤유식 (중앙대학교 의과대학 미생물학교실)
  • Published : 2009.12.30

Abstract

Platycodin D, a major component of Platycodi radix, is known to have various activities including anti-inflammatory, anti-hyperlipidemic, anti-tumor activities and others. Recently, it was reported that platycodin D inhibits fat accumulation and adipogenesis. The aim of this study was to investigate whether various adipogenic regulators are modulated by platycodin D treatment during the adipogenesis of 3T3-L1 cells. mRNA levels of terminal markers of adipogenesis such as ADIPOQ (adiponectin) and GLUT (glucose transporter) 4, which were quantified by real time PCR, were decreased by platycodin D treatment. mRNA expression of PPAR (peroxisome proliferator-activated receptor) $\gamma$ and C/EBP (CCAAT/enhaner binding protein) $\alpha$, which are central transcription factors of adipogenesis, were also decreased by platycodin D treatment. To elucidate the detailed molecular mechanism of platycodin D-induced inhibition of adipogenesis, we analyzed mRNA expression of upstream regulators of PPAR$\gamma$ and C/EPB$\alpha$. mRNA levels of the pro-adipogenic regulators, KROX20 and KLF (Kruppel-like factor) 15 were markedly down-regulated by platycodin D treatment. On the other hand, mRNA expression of CHOP (C/EBP homologous protein), an anti-adipogenic regulator, was significantly up-regulated by platycodin D treatment. mRNA levels of other pro-adipogenic regulators, C/EBP$\beta$ and C/EPB$\delta$, were not affected by platycodin D treatment, and another anti-adipogenic regulator, C/EBP$\gamma$ was also not affected by platycodin D treatment. Taken together, these results suggest that platycodin D-induced inhibition of adipogenesis is mediated by gene interactions including the down-regulation of pro-adipogenic regulators, KROX20 and KLF15, and the up-regulation of an anti-adipogenic regulator, CHOP.

Platycodi radix의 주요 성분으로 항염증, 항고지혈 및 항종양 등 다양한 약리적 기능을 가지는 platycodin D는 최근 비만 및 지방세포형성(adipogenesis)을 억제하는 효과를 가진다고 보고되고 있다. 본 연구에서는 adipogenesis의 상위단계에 위치한 다양한 pro-adipogenic regulators와 anti-adipogenic regulators의 발현이 platycodin D에 의해 어떻게 변화되는지 분석하였다. Real-time PCR을 이용한 mRNA 발현의 정량적 분석에서 adipogenesis의 marker라 불리는 ADIPOQ와 GLUT4의 mRNA 발현은 platycodin D의 처리에 의해 유의적으로 감소되었다. 또한 terminal marker의 발현을 조절하는 PPAR$\gamma$와 C/EPB$\alpha$의 mRNA 발현 역시 platycodin D에 의해 유의하게 억제되었다. Platycodin D의 지방세포 억제 효과에 대한 상세한 분자적 메커니즘을 규명하기 위해, PPAR$\gamma$와 C/EPB$\alpha$의 상위 조절자들의 mRNA 발현 변화를 분석하였다. Pro-adipogenic regulators에 대한 platycodin D의 효과를 분석한 결과, C/EBP$\beta$와 C/EPB$\delta$의 mRNA 발현은 platycodin D에 의해 변화가 없었던 반면, KROX20과 KLF15의 mRNA 발현은 각각 초기 분화(2일)와 후기 분화(4일)에서 platycodin D에 의해 유의한 감소를 보였다. 또한, 대표적인 anti-adipogenic regulators인 CHOP의 mRNA 발현은 초기분화에서 platycodin D에 의해 유의하게 증가한 반면, 또 다른 anti-adipogenic regulators인 C/EBP$\gamma$의 mRNA 발현은 platycodin D에 의해 영향을 받지 않았다. 따라서 adipogenesis 과정에서 platycodin D는 pro-adipogenic regulators인 KROX20, KLF15와 anti-adipogenic regulator인 CHOP의 mRNA 발현에 영향을 주어 PPAR$\gamma$와 C/EPB$\alpha$를 조절하는 것으로 보여진다. 결론적으로, platycodin D에 의한 adipogenesis 억제 효과는 KROX20, KLF15 등의pro-adipogenic regulator와 CHOP 등의 anti-adipogenic regulator의 상호작용을 통해 나타나는 결과라 사료된다.

Keywords

References

  1. Ahmed, W., O. Ziouzenkova, J. Brown, P. Devchand, S. Francis, M. Kadakia, T. Kanda, G. Orasanu, M. Sharlach, F. Zandbergen, and J. Plutzky. 2007. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262, 184-198 https://doi.org/10.1111/j.1365-2796.2007.01825.x
  2. Burton, G. R., R Nagaraj an, C. A. Peterson, and R E. McGehee, Jr. 2004. Microarray analysis of differentiationspecific gene expression during 3T3-Ll adipogenesis. Gene 329, 167-185 https://doi.org/10.1016/j.gene.2003.12.012
  3. Chen, Z., J. I. Torrens, A. Anand, B. M. Spiegelman, and J. M. Friedman. 2005. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 1, 93-106 https://doi.org/10.1016/j.cmet.2004.12.009
  4. Christy, R. J., K. H. Kaestner, D. E. Geiman, and M. D. Lane. 1991. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-Ll preadipocytes. Proc. NatI. A cad. Sci. USA 88, 2593-2597 https://doi.org/10.1073/pnas.88.6.2593
  5. Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes in adipocyte differentiation. J. BioI. Chem. 273, 30057-30060 https://doi.org/10.1074/jbc.273.46.30057
  6. Freytag, S. O., D. L. Paielli, and J. D. Gilbert. 1994. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8, 1654-1663 https://doi.org/10.1101/gad.8.14.1654
  7. Gray, S., M. W. Feinberg, S. HulL C. T. Kuo, M. Watanabe, S. Sen-Bane*e, A DePina, R. HaspeL and M. K Jain. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J. BioI. Chem. 277, 34322-34328 https://doi.org/10.1074/jbc.M201304200
  8. Gustafson, B. and U. Smith. 2006. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-Ll preadipocytes. J. BioI. Chem. 281, 9507-9516
  9. Hamm, J. K., B. H. Park, and S. R. Farmer. 2001. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-Ll preadipocytes. J. BioI. Chem. 276, 18464-18471 https://doi.org/10.1074/jbc.M100797200
  10. Han, L. K, B. J. Xu, Y. Kimura, Y. Zheng, and H. Okuda. 2000. Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. J. Nutr. 130, 2760-2764
  11. Han, L. K., Y. N. Zheng, B. J. Xu, H. Okuda, and Y. Kimura. 2002. Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. J. Nutr. 132, 2241-2245
  12. Hiroahi Ishii K., Y. Yohko. 1981. Saponins from the roots of platycodon grandiflorum. Part 1. Structure of prosapogenins. J. Chem. Soc. Perkin. Trans. 1, 1928-1933 https://doi.org/10.1039/p19810001928
  13. Hiroshi Ishii K., T. Takehiko, Y. Yohko, 1984. Saponins from roots of platycodon grandiflorum. Part 2. Isolation and structure of new triterpene glycosides. J. Chem. Soc. Perkin. Trans. 1, 661-668 https://doi.org/10.1039/p19840000661
  14. Kaczynski, J., T. Cook, and R. Urrutia. 2003. Sp1- and Kruppel-like transcription factors. Genome BioI. 4, 206 https://doi.org/10.1186/gb-2003-4-2-206
  15. Kim, Y. P., E. B. Lee, S. Y. Kim, D. Li, H. S. Ban, S. S. Lim, K. H. Shin, and K. Ohuchi. 2001. Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta. Med. 67, 362-364 https://doi.org/10.1055/s-2001-14317
  16. Koerner, A., J. Kratzsch, and W. Kiess. 2005. Adipocytokines: leptin--the classicaL resistin--the controversicaL adiponectin--the promising, and more to come. Best Pract. Res. Clin. Endocrinol Metab. 19, 525-546 https://doi.org/10.1016/j.beem.2005.07.008
  17. Lee, H., R. Kang, Y. S. Kim, S. I. Chung, and Y. Yoon. 2009. Platycodin D inhibits adipogenesis of 3T3-Ll cells by modulating Kruppel-like factor 2 and Peroxisome proliferatoractivated receptor y. Phytother. Res. in press
  18. Lin, F. T. and M. D. Lane. 1994. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc. Nati. A cad. Sci. USA 91, 8757-8761 https://doi.org/10.1073/pnas.91.19.8757
  19. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta qT)) Method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  20. MacDougald, O. A. and M. D. Lane. 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345-373 https://doi.org/10.1146/annurev.bi.64.070195.002021
  21. Medina-Gomez, G., S. Virtue, C. LellioU, R. Boiani, M. Campbell, C. Christodoulides, C. Perrin, M. Jimenez-Linan, M. Blount, J. Dixon, D. Zahn, R. R. Thresher, S. Aparicio, M. Carlton, W. H Colledge, M. I. Kettunen, T. SeppanenLaakso, J. K Sethi, S. O'Rahilly, K Brindle, S. Cinti, M. Oresic, R. Burcelin, and A Vidal-Puig. 2005. The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform. Diabetes 54, 1706-1716 https://doi.org/10.2337/diabetes.54.6.1706
  22. Mori, T., H. Sakaue, HIguchi, H. Gomi, Y. Okada, Y. Takashima, K Nakamura, T. Nakamura, T. Yamauchi, N. Kubota, T. Kadowaki, Y. Matsuki, W. Ogawa, R. Hiramatsu, and M. Kasuga. 2005. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J. BioI. Chem. 280, 12867-12875 https://doi.org/10.1074/jbc.M410515200
  23. Morrison, R. F. and S. R. Farmer. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116S-3121S
  24. Morrison, R. F. and S. R. Farmer. 1999. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Wafl/Cip1), during adipogenesis. J. BioI. Chem. 274, 17088-17097 https://doi.org/10.1074/jbc.274.24.17088
  25. Rosen, E. D. and O. A MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell BioI. 7, 885-896 https://doi.org/10.1038/nrm2066
  26. Shao, D. and M. A. Lazar. 1997. Peroxisome proliferator activated receptor gamma, CCAAT / enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J. BioI. Chem. 272, 21473-21478 https://doi.org/10.1074/jbc.272.34.21473
  27. Shepherd, P. R. and B. B. Kahn. 1999. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248-257 https://doi.org/10.1056/NEJM199907223410406
  28. Spiegelman, B. M. and J. S. Flier. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543 https://doi.org/10.1016/S0092-8674(01)00240-9
  29. Takano, H and I. Komuro. 2009. Peroxisome proliferatoractivated receptor gamma and cardiovascular diseases. Circ. J. 73, 214-220 https://doi.org/10.1253/circj.CJ-08-1071
  30. Tanaka, T., N. Yoshida, T. Kishimoto, and S. Akira. 1997. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. Embo. J. 16, 7432-7443 https://doi.org/10.1093/emboj/16.24.7432
  31. Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PP AR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156 https://doi.org/10.1016/0092-8674(94)90006-X
  32. Wang, N. D., M. J. Finegold, A Bradley, C. N. Ou, S. V. Abdelsayed, M. D. Wilde, L. R. Taylor, D. R. Wilson, and G. J. Darlington. 1995. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269, 1108-1112 https://doi.org/10.1126/science.7652557
  33. Zhang, J., M. Fu, T. Cui, C. Xiong, K. Xu, W. Zhong, Y. Xiao, D. Floyd, J. Liang, E. Li, Q. Song, and Y. E. Chen. 2004. Selective disruption of PP ARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc. Nati. A cad. Sci. USA 101, 10703-10708 https://doi.org/10.1073/pnas.0403652101
  34. Zhao, H. L., K. H. Cho, Y. W. Ha, T. S. Jeong, W. S. Lee, and Y. S. Kim. 2006. Cholesterol-lowering effect of platycodin D in hypercholesterolemic ICR mice. Eur. J. Pharmacol. 537, 166-173 https://doi.org/10.1016/j.ejphar.2006.03.032
  35. Zhao, H. L., S. V. Harding, C. P. Marinangeli, Y. S. Kim, and P. J. Jones. 2008. Hypocholesterolemic and anti-obesity effects of saponins from Platycodon grandiflorum in hamsters fed atherogenic diets. J. Food Sci. 73, H195-200 https://doi.org/10.1111/j.1750-3841.2008.00915.x

Cited by

  1. The Evaluation of the Body Weight Lowering Effects of Herbal Extract THI on Exercising Healthy Overweight Humans: A Randomized Double-Blind, Placebo-Controlled Trial vol.2013, 2013, https://doi.org/10.1155/2013/758273