초록
This paper proposes robust state feedback control of asynchronous sequential machines with model uncertainty. The considered asynchronous machine is deterministic, but its state transition function is partially known before executing a control process. The main objective is to derive the existence condition for a corrective controller for which the behavior of the closed-loop system can match a prescribed model in spite of uncertain transitions. The proposed control scheme also has learning ability. The controller perceives true state transitions as it undergoes corrective actions and reflects the learned knowledge in the next step. An adaptation is made such that the controller can have the minimum number of state transitions to realize a model matching procedure. To demonstrate control construction and execution, a VHDL and FPGA implementation of the proposed control scheme is presented.