DOI QR코드

DOI QR Code

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed

기후변화가 경안천 유역의 수문요소에 미치는 영향 평가

  • Ahn, So-Ra (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Min-Ji (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Geun-Ae (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 안소라 (건국대학교 대학원 사회환경시스템공학과) ;
  • 박민지 (건국대학교 대학원 사회환경시스템공학과) ;
  • 박근애 (건국대학교 대학원 사회환경시스템공학과) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학과)
  • Published : 2009.01.31

Abstract

The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

본 연구에서는 SLURP 장기 수문모형을 이용하여 미래기후와 예측된 토지이용자료 및 식생의 활력도를 고려한 상태에서 하천유역의 수문요소에 미치는 영향을 분석하였다. 경안천 상류유역($260.4\;km^2$)을 대상유역으로 선정하여 4개년(1999-2002) 동안의 일별 유출량 자료를 바탕으로 모형의 보정(1999-2000)과 검증(2001-2002)을 실시하였다. 모형의 보정 및 검정 결과 Nash-Sutcliffe 모형효율은 0.79에서 0.60의 범위로 $R^2$는 0.77에서 0.60의 범위로 나타났다. 미래 기후자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 A2, A1B, B1 기후변화시나리오 의 MIROC3.2 hires, ECHAM5-OM 모델의 결과 값을 이용하였다. 먼저 과거 30년 기후자료(1977-2006, baseline)를 바탕으로 각 모델별 20C3M(20th Century Climate Coupled Model)의 모의 결과 값을 이용하여 강수와 온도를 보정 한 뒤 Change Factor Method로 downscaling 하였다. 미래 기후자료는 2020s(2010-2039), 2050s(2040-2069), 2080s(2070-2099)의 세 기간으로 나누어 분석하였다. 불확실성을 줄이고자 개선된 CA-Markov기법으로 미래 토지이용을 예측하였으며, 월별 NDVI와 월평균기온간의 선형 회귀식을 도출하여 미래의 식생지수 정보를 추정하였다. 모형의 적용결과, 미래 유출량은 MIROC3.2 hires는 A1B(2080s) 시나리오에서 연 유출량이 21.4% 증가, ECHAM5-OM은 A1B(2050s) 시나리오에서 8.9% 증가하였다. 증발산량은 MIROC3.2 hires가 3%, ECHAM5-OM은 16% 증가하였다. 미래 토양수분량은 현재에 비해 약 1% 정도 증가하였다.

Keywords

References

  1. 기상연구소 (2004). 기후변화엽학 대응 지역기후시나리오 활용기술개발(III), 기상연구소
  2. 김병식, 김형수, 서병하, 김남원 (2004). “기후변화가 용담댐 유역의 유출에 미치는 영향.” 한국수자원학회논문집, 한국수자원학회지, 제37권, 제2호, pp. 185-193 https://doi.org/10.3741/JKWRA.2004.37.3.185
  3. 김성준 (2002) “수자원 분포의 시공간적 변동.” 한국농림기상학회지, 한국농림기상학회, 제4권, 제3권, pp. 175-196
  4. 배덕효, 정일원 (2005). “기후변화에 따른 수자원 영향 평가.“ 방재정보, 한국방재협회, 제21호, pp. 16-22
  5. 안소라, 이용준, 박근애, 김성준 (2008). “미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석.” 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224
  6. 안재현, 유철상, 윤용남 (2001). “GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석.” 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345
  7. 유철상, 이동률 (2000). “기후변화와 수자원: 국내의 연구동향.” 한국수자원학회논문집, 한국수자원학회, 제33권 3호, pp. 42-47
  8. 이용준, 김성준 (2007). 미래 토지이용변화 예측을 위한 개선된 CA-Markov 기법의 제안 및 적용, 대한토목학회논문집, 대한토목학회, 제27권, 제6D호, pp. 809-817
  9. Ahn, S.R., Ha, R., Lee, Y.J., Park, G.A., and Kim, S.J. (2008). “Evaluation of future climate change impact on Gyeongancheon Watershed using SLURP hydrological model.” Korean Journal of Remote Sensing. Vol. 24, No. 1, pp. 45-55 https://doi.org/10.7780/kjrs.2008.24.1.45
  10. Andersson, L., Wilk, J., Todd, M.C., Hughes, D.A., Earle, A., Kniveton, D., Layberry, R., and Savenije. H.G. (2006). "Impact of climate change and development scenarios on flow patterns in the Okavango River." Journal of Hydrology. Vol. 331, pp. 43-57 https://doi.org/10.1016/j.jhydrol.2006.04.039
  11. Carter, T.R., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment
  12. Diaz-nieto, J., and Wilby, R.L. (2005). "A comparision of statistical downscaling and climate change factor methods impacts on low flows in the River Thames." Climatic Change. Vol. 69, pp. 245-268 https://doi.org/10.1007/s10584-005-1157-6
  13. Doogers, P., and Aerts, J. (2005). "Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins." Physics and Chemistry of he earth. Vol. 30, pp. 339-346 https://doi.org/10.1016/j.pce.2005.06.015
  14. Duan, Q., Sorooshian, S.S., and Gupta, V.K. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, pp. 265-284 https://doi.org/10.1016/0022-1694(94)90057-4
  15. Garbrecht, J. and Martz, L.W. (1997). TOPAZ Version 1.20: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization - Overview. Rep.# GRL 97-2, Grazinglands Research Laboratory, USDA, Agricultural Research Service, El Reno, Oklahoma, pp. 21
  16. IPCC. (2001). Climate Change 2001: The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
  17. IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  18. IPCC.-TGCLA (1999). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment, Version 1. Prepared by Carter, T. R., M. Hulme, and M. Lal, Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, pp. 69
  19. Kendall, M.G. (1975). Rank Correlation Methods. Griffin, London
  20. Kite, G.W. (1975). "Performance of two deterministic hydrological models." IASH-AISH Publication, Vol. 115, pp. 136-142
  21. Kite, G.W. (1998) "Land surface parameterizations of GCMs and macroscale hydrological models." Journal American Water Resources Association, Vol. 34, No. 6, pp. 1247-1254 https://doi.org/10.1111/j.1752-1688.1998.tb05428.x
  22. Kite, G.W. (1993). "Application of a land class hydrological model to climatic change." Water Resources Research, Vol. 29, No. 7, pp. 2377-2384 https://doi.org/10.1029/93WR00582
  23. Kite, G.W., Ellehoj, E., and Dalton, A. (1996). GIS for large-scale watershed modelling, in Geographical Information Systems in Hydrology. Singh, V.P.; Fiorentino, M (eds). Kluwer Academic Publishers, Netherlands
  24. Mann, H.B., (1945). Nonparametric tests against trend. Econometrica. Vol. 13, pp. 245-259 https://doi.org/10.2307/1907187
  25. Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen. D. (2006). "Hydrologic response to scenario of climate change in sub watersheds of the Okanagan basin, British Columbia." Journal of Hydrology. Vol. 326, pp. 79-108 https://doi.org/10.1016/j.jhydrol.2005.10.025
  26. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models; Part 1 - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  27. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the vernal advancement of natural vegetation. NASA Goddard Space Flight Center, Greenbelt, MD, Final Rep.
  28. Sefton, C.E.M., and Boorman, D.B. (1997). “A Resinal Investigation of Climate Change Impacts on UK Streamflows.” Journal of Hydrology, Vol. 195, pp. 26-44 https://doi.org/10.1016/S0022-1694(96)03257-X
  29. Snell, S.E., Gopal, S., and Kaufmann. R.K. (2000). "Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs." Journal of Climate. Vol. 13, No. 5, pp. 886-895 https://doi.org/10.1175/1520-0442(2000)013<0886:SIOSAT>2.0.CO;2
  30. Viner, D., and Mayer, L. (1994). Climate Change Scenarios of Impact Studies in the UK, Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia
  31. Wilby, R.L., and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames." Water Resources Research. Vol. 42, pp. 1-10 https://doi.org/10.1029/2005WR004065
  32. Zhang, X., Srinivasan, R., and Hao, F. (2007). "Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model." ASAE. Vol. 50, No. 3, pp. 901-910
  33. Zhou, L., Dickinson, R. E., Tian, Y., Zeng, X., Dai, Y., Yang, Z. L., Schaaf. C. B., Gao, F., Jin, Y., Strahler, A., Myneni, R.B., Yu, H., and Shaikh. M. (2003). "Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model." Journal of Geophysical Research. Vol. 108, No. 15, pp. 1-20 https://doi.org/10.1029/2002JD003326

Cited by

  1. Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.569
  2. Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed vol.42, pp.10, 2009, https://doi.org/10.3741/JKWRA.2009.42.10.877
  3. Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves vol.42, pp.12, 2009, https://doi.org/10.3741/JKWRA.2009.42.12.1091
  4. Assessing the Effects of Climate Change on Irrigation Water Requirement for Corn in Zimbabwe vol.53, pp.1, 2011, https://doi.org/10.5389/KSAE.2011.53.1.047
  5. Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model vol.51, pp.5, 2009, https://doi.org/10.5389/KSAE.2009.51.5.025
  6. Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed vol.35, pp.3, 2015, https://doi.org/10.12652/Ksce.2015.35.3.0567
  7. Verification of Bias Corrected Simulations of Climate Models Using Entropy vol.15, pp.5, 2015, https://doi.org/10.9798/KOSHAM.2015.15.5.25
  8. The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed vol.25, pp.4, 2011, https://doi.org/10.1002/hyp.7781
  9. Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir vol.30, pp.5, 2014, https://doi.org/10.15681/KSWE.2014.30.5.491
  10. Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models vol.44, pp.5, 2011, https://doi.org/10.3741/JKWRA.2011.44.5.389
  11. Simulation of the Effects of Climate Change on Yield of Maize in Zimbabwe vol.53, pp.3, 2011, https://doi.org/10.5389/KSAE.2011.53.3.065
  12. Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.505
  13. Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.959
  14. Development of spatial water resources vulnerability index considering climate change impacts vol.409, pp.24, 2011, https://doi.org/10.1016/j.scitotenv.2011.08.027
  15. Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change vol.65, 2012, https://doi.org/10.1016/j.resconrec.2012.05.005
  16. Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.185
  17. Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios vol.31, pp.3, 2015, https://doi.org/10.15681/KSWE.2015.31.3.241