DOI QR코드

DOI QR Code

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Published : 2009.01.31

Abstract

Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

Keywords

References

  1. Bachtsi, A. and Kiparissides, C. (1995). An experimental investigation of enzyme release from poly (vinyl alcohol) crosslinked microspheres. J. microencapsul. 12, 23-25 https://doi.org/10.3109/02652049509051124
  2. Badawy, M. E. I., Rabea, E. I., Rogge, T. M., Stevens, C. V. G., Smagghe, G. and Steurbaut, W. (2004). Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5, 589-595 https://doi.org/10.1021/bm0344295
  3. Canet, E., Revel, D., Forrat, R., Baldy-Porcher, C., de Lorgeril, M., Sebbag, L., Vallee, J. P., Didier, D. and Amiel, M. (1993). Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. Magn. Reson. Imaging 11, 1139-1145 https://doi.org/10.1016/0730-725X(93)90241-5
  4. Chambon, C., Clément, O., Le Blanche, A., Schouman-Claeys, E. and Frija, G. (1993). Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn. Reson. Imaging 11, 509-519 https://doi.org/10.1016/0730-725X(93)90470-X
  5. Dion, J. E., Rankin, R. N., Vinuela, F., Fox, A. J., Wallace, A. C. and Mervart, M. (1986). Dextran microsphere embolization: experimental and clinical experience with radiologicpathologic correlation. Radiology 160, 717-721 https://doi.org/10.1148/radiology.160.3.2426727
  6. Eroglu, M., Kursaklioglu, H., Misirli, Y., Iyisoy, A., Acar, A., Dogan, A.I. and Denkbas, E. B. (2006). Chitosan-coated alginate microspheres for embolization and/or chemoembolization : In vivo studies. J. microencapsul. 23, 367-376 https://doi.org/10.1080/02652040500286318
  7. Fahimi H. D. and Drochmans, P. (1965). Essais de standardisation de la fixation au glutaraldehyde. I. Purification et determination de la concentration du glutaraldehyde, J. Micr. 4, 725-736
  8. Flandroy, P., Grandfils, C. and Collignon, J. (1990). (D,L) Polylactide microspheres as embolic agent. A preliminary study. Neuroradiology 32, 311-315 https://doi.org/10.1007/BF00593051
  9. Forsberg, J. O. (1978). Transient blood flow reduction induced by intra-arterial injection of degradable starch microspheres. Acta. Chir. Scand. 144, 275-281
  10. Furuse, J., Iwasaki, M., Yoshino, M., Konishi, M., Kawano, N. and Kinoshita, T. (1997). Hepatocellular carcinoma with portal vein tumor thrombus: embolization of arterioportal shunts. Radiology 204, 787-790 https://doi.org/10.1148/radiology.204.3.9280260
  11. Gohel, M. C., Sheth, M. N., Patel, M, M., Jani, G. K. and Patel, H. (1994). Design of chitosan microspheres containing diclofenac sodium. Indian J. Pharm. Sci. 56, 210-214
  12. Gross, P. M. and Saylor, J. H. (1931). The solubilities of certain slightly soluble organic compounds in water. J. Am. Chem. Soc. 53, 1744-1751 https://doi.org/10.1021/ja01356a016
  13. Hamoudeh, M., Al Faraj, A., Canet-Soulas, E., Bessueille, F., Leonard, D. and Fessi, H. (2007). Elaboration of PLLAbased superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 29, 248-257 https://doi.org/10.1016/j.ijpharm.2007.01.023
  14. Huang, M. S., Lin, Q., Jiang, Z. B., Zhu, K. S., Guan, S. H. and Li, Z. R. (2004). Comparison of long-term effects between intra-arterially delivered ethanol and Gelfoam for the treatment of severe arterioportal shunt in patients with hepatocellular carcinoma. J. Gastroenterol. 10, 825-829
  15. Jameela, S. R., Kumary, T. V., Lal, A. V. and Jayakrishnan, A. (1998). Progesterone-loaded chitosan microspheres: a long-acting controlled delivery system. J. Control. Rel. 52, 17-24 https://doi.org/10.1016/S0168-3659(97)00187-9
  16. Kim, J. S., Kwak, B. K., Shim, H. J., Lee, Y. C., Baik, H. W., Lee, M., Han, S., Son, S. H., Kim, Y. B., Tokura, S. and Lee, B. M. (2007). Preparation of doxorubicin-containing chitosan microspheres for transcatheter arterial chemoembolization of hepatocellular carcinoma. J. microencapsul. 24, 408-419 https://doi.org/10.1080/02652040701339213
  17. Klevens, H. B. (1950). Solubilization of polycyclic hydrocarbons. J. Phys. Chem. 54, 283-298 https://doi.org/10.1021/j150476a011
  18. Latha, M. S., Rathinam, K., Mohanan, P. V. and Jayakrishnan, A. (1995). Bioavailability of theophylline from glutaraldehyde cross-linked casein microspheres in rabbits following oral administration. J. Control. Rel. 34, 1-7 https://doi.org/10.1016/0168-3659(94)00088-C
  19. Laurent, A., Beaujeux, R., Wassef, M., Rufenacht, D., Boschetti, E. and Merland, J. J. (1996). Trisacryl gelatin microspheres for therapeutic embolization. I: development and in vitro evaluation. Am. J. Neuroradiol. 17, 533-540
  20. Lee, D. H., Yoon, H. K., Song, H. Y., Kim, G. C., Hwang, J. C. and Sung, K. B. (1999). Embolization of Seve re Arterioportal Shunts in the Patients with Hepatocellular Carcinoma: Safety and Influence on Patient Survival. J. Korean. Radiol. Soc. 41, 1117-1125 https://doi.org/10.3348/jkrs.1999.41.6.1117
  21. Lee, H. S., Kim, E. H., Shao, H. and Kwak, B. K. (2005). Synthesis of SPIO-chitosan microspheres for MRI-detectable embolotherapy. J. Magn. Magn. Mater. 293, 102-105 https://doi.org/10.1016/j.jmmm.2005.01.049
  22. Liu. J., Flores. G. A. and Sheng, R. (2001). In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids. J. Magn. Magn. Mater. 225, 209-217 https://doi.org/10.1016/S0304-8853(00)01260-9
  23. Monteiro, O. A. and Airoldi, C. (1999). Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 26, 119-128 https://doi.org/10.1016/S0141-8130(99)00068-9
  24. Muller, R. N., Gillis, P., Moiny, M. and Roch, A. (1991). Transverse relaxivity of particulate MRI contrast media: from theories to experiments. Magn. Reson. Med. 222, 178-182 https://doi.org/10.1002/mrm.1910220203
  25. Roch, A., Muller, R. N. and Gillis, P. (1999). Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 110, 5403-5411 https://doi.org/10.1063/1.478435
  26. Sinha, V. R., Singla, A. K., Wadhawan, S., Kaushik, R., Kumria, K. and Bansal, K. (2004). Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274, 1-33 https://doi.org/10.1016/j.ijpharm.2003.12.026
  27. Tarazov, P. G. (1993). Intrahepatic arterioportal fistulae: Role of transcatheter embolization. Cardiovasc. Intervent. Radiol. 16, 368-373 https://doi.org/10.1007/BF02603142

Cited by

  1. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics vol.15, pp.3, 2017, https://doi.org/10.3390/md15030060
  2. Trojan Microparticles for Drug Delivery vol.4, pp.4, 2012, https://doi.org/10.3390/pharmaceutics4010001
  3. Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: In vitro and in vivo evaluation vol.527, pp.1-2, 2017, https://doi.org/10.1016/j.ijpharm.2017.04.069
  4. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization vol.511, pp.2, 2016, https://doi.org/10.1016/j.ijpharm.2016.07.028