References
- Balshaw, D. M., Philbert, M. and Suk, W. A. (2005). Research strategies for safety evaluation of nanomaterials, Part III: nanoscale technologies for assessing risk and improving public health. Toxicol. Sci. 88, 298-306 https://doi.org/10.1093/toxsci/kfi312
- Chithrani, B. D. and Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano. Lett. 7, 1542-1550 https://doi.org/10.1021/nl070363y
- Chithrani, B. D., Ghazani, A. A. and Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 6, 662-668 https://doi.org/10.1021/nl052396o
- Dhawan, A., Taurozzi, J. S., Pandey, A. K., Shan, W., Miller, S. M., Hashsham, S. A. and Tarabara, V. V. (2006). Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ. Sci. Technol. 40, 7394-7401 https://doi.org/10.1021/es0609708
- Dufour, E. K., Kumaravel, T., Nohynek, G. J., Kirkland, D. and Toutain, H. (2006). Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat. Res. 607, 215-224 https://doi.org/10.1016/j.mrgentox.2006.04.015
- El-Sayed, I. H., Huang, X. and El-Sayed, M. A. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano. Lett. 5, 829-834 https://doi.org/10.1021/nl050074e
- Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 241, 20-22 https://doi.org/10.1038/physci241020a0
- Gurr, J. R., Wang, A. S., Chen, C. H. and Jan, K. Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73 https://doi.org/10.1016/j.tox.2005.05.007
- Holsapple, M. P. and Lehman-McKeeman, L. D. (2005). Forum series: research strategies for safety evaluation of nanomaterials. Toxicol. Sci. 87, 315 https://doi.org/10.1093/toxsci/kfi286
- Jana, N.R., Gearheart, L. and Murphy, C.J. (2001). Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B. 105, 4065-4067 https://doi.org/10.1021/jp0107964
- Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J. and Warheit, D. B. (2006). Safe handling of nanotechnology. Nature 444, 267-269 https://doi.org/10.1038/444267a
- McNamee, J. P., McLean, J. R., Ferrarotto, C. L. and Bellier, P. V. (2000). Comet assay: rapid processing of multiple samples. Mutat. Res. 466, 63-69 https://doi.org/10.1016/S1383-5718(00)00004-8
- Nel, A., Xia, T., Madler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311, 622-627 https://doi.org/10.1126/science.1114397
- Oberdorster, G., Ferin, J. and Lehnert, B. E. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 102 Suppl 5, 173-179 https://doi.org/10.2307/3432080
- Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823-839 https://doi.org/10.1289/ehp.7339
- Papageorgiou, I., Brown, C., Schins, R., Singh, S., Newson, R., Davis, S., Fisher, J., Ingham, E. and Case, C. P. (2007). The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28, 2946-2958 https://doi.org/10.1016/j.biomaterials.2007.02.034
- Porter, A. E., Gass, M., Muller, K., Skepper, J. N., Midgley, P. A. and Welland, M. (2007). Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotechnology 2, 713-717 https://doi.org/10.1038/nnano.2007.347
- Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D. G. and Schiffmann, D. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ. Health Perspect. 110, 797-800 https://doi.org/10.1289/ehp.02110797
- Thomas, K., Aguar, P., Kawasaki, H., Morris, J., Nakanishi, J. and Savage, N. (2006a). Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci. 92, 23-32 https://doi.org/10.1093/toxsci/kfj211
- Thomas, K. and Sayre, P. (2005). Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol. Sci. 87, 316-321 https://doi.org/10.1093/toxsci/kfi270
- Thomas, T., Thomas, K., Sadrieh, N., Savage, N., Adair, P. and Bronaugh, R. (2006b). Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol. Sci. 91, 14-19 https://doi.org/10.1093/toxsci/kfj129
Cited by
- The effect of particle size on the genotoxicity of gold nanoparticles vol.105, pp.3, 2017, https://doi.org/10.1002/jbm.a.35944
- Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats vol.766-767, 2014, https://doi.org/10.1016/j.mrfmmm.2014.05.009
- Evaluation of CdSe/CdS-PEG-FA quantum dots: distribution and observable-adverse-effect-level in mice after intravenous injection vol.42, pp.4, 2012, https://doi.org/10.1007/s40005-012-0026-3
- Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA vol.398, pp.2, 2010, https://doi.org/10.1007/s00216-010-3881-7
- NIST gold nanoparticle reference materials do not induce oxidative DNA damage vol.7, pp.1, 2013, https://doi.org/10.3109/17435390.2011.626537
- Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms vol.32, 2012, https://doi.org/10.1016/j.trac.2011.09.007
- Scientific Opinion on the re-evaluation of gold (E 175) as a food additive vol.14, pp.1, 2016, https://doi.org/10.2903/j.efsa.2016.4362
- Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis vol.44, pp.1, 2012, https://doi.org/10.1016/j.biocel.2011.10.019
- Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells vol.24, pp.3, 2014, https://doi.org/10.3109/15376516.2013.869783
- The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage vol.39, pp.4, 2009, https://doi.org/10.1177/1091581820927646
- Toxicity of gold nanoparticles (AuNPs): A review vol.26, pp.None, 2009, https://doi.org/10.1016/j.bbrep.2021.100991
- Chitosan-Coated Gold Nanoparticles Induce Low Cytotoxicity and Low ROS Production in Primary Leucocytes, Independent of Their Proliferative Status vol.13, pp.7, 2021, https://doi.org/10.3390/pharmaceutics13070942