DOI QR코드

DOI QR Code

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang (Department of Anesthesiology and Pain Medicine, College of Medicine, Chosun University Hospital) ;
  • Lim, Hyo-Jeong (Department of Internal Medicine, Seoul National University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, Chosun University)
  • 발행 : 2009.01.31

초록

The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

키워드

참고문헌

  1. Albillos, A., Abad, F. and Garcia, A. G. (1992). Cross-talk between M2 muscarinic and D1 dopamine receptors in the cat adrenal medulla. Biochem. Biophys. Res. Commun. 183, 1019-1024 https://doi.org/10.1016/S0006-291X(05)80292-X
  2. Andersen, P. H. and Jansen, J. A. (1990). Dopamine receptor agonists: Selectivity and D1 receptor efficacy. Eur. J. Pharmacol. 188, 335-347 https://doi.org/10.1016/0922-4106(90)90194-3
  3. Anton, A. H. and Sayre, D. F. (1962). A study of the factors affec ting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
  4. Artalejo, A. R., Ariano, M. A., Perlman, R. L. and Fox, A. P. (1990). Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a AMP/protein Kinase A-dependent mechanism. Nature 348, 239-242 https://doi.org/10.1038/348239a0
  5. Brewster, W. K., Nichols, D. E., Riggs, R. M., Mottola, D. M., Lovenberg, T. W., Lewis, M. H. and Mailman, R. B. (1990). Trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobeno[a]-phenanthridine: a highly potent selective dopamine D1 full agonist. J. Med. Chem. 33, 1756-1764 https://doi.org/10.1021/jm00168a034
  6. Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72(4 Suppl), S15-48 https://doi.org/10.1152/physrev.1992.72.suppl_4.S15
  7. Catterall, W. A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25 https://doi.org/10.1016/S0896-6273(00)81133-2
  8. Challiss, R. A., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  9. Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS. Lett. 247, 429-434 https://doi.org/10.1016/0014-5793(89)81385-7
  10. Dahmer, M. K. and Senogles, S. E. (1996a). Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J. Neurochem. 67, 1960-1964 https://doi.org/10.1046/j.1471-4159.1996.67051960.x
  11. Dahmer, M. K. and Senogles, S. E. (1996b). Doparminergic inhibition of catecholamine secretion from chromaffin cells: Evidence that inhibition is mediated by $D_4$ and $D_5$ dopamine receptors. J. Neurochem. 66, 222-232 https://doi.org/10.1046/j.1471-4159.1996.66010222.x
  12. Damase-Michel, C., Montastruc, J. L. and Tran, M. A. (1995). Effects of dopaminergic drugs on the sympathoadrenal system. Hypertens. Res. 18(Suppl 1), S119-124 https://doi.org/10.1291/hypres.18.SupplementI_S119
  13. Felder, C. C., Blecher, M. and Jose, P. A. (1989). Dopamine-1 mediated stimulation of phospholipase C activity in rat renal cortical membranes. J. Biol. Chem. 264, 8739-8745
  14. Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71 https://doi.org/10.1038/309069a0
  15. Ghosh, A. and Greenberg, M. E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 268, 239-247 https://doi.org/10.1126/science.7716515
  16. Gleason, S. D. and Witkin, J. M. (2006). Effects of dopamine $D_1$ receptor agonists in rats trained to discriminate dihydrexidine. Psychopharmacology (Berl) 186, 25-31 https://doi.org/10.1007/s00213-006-0342-2
  17. Gleason, S. D. and Witkin, J. M. (2004). Effects of dopamine $D_1$ receptor full agonists in rats trained to discriminate SKF 38393. Behav. Pharmacol. 15, 85-89 https://doi.org/10.1097/00008877-200402000-00010
  18. Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003 https://doi.org/10.1016/0006-2952(89)90679-5
  19. Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2992-2998 https://doi.org/10.1016/0024-3205(82)90066-2
  20. Holz, R. W., Senter, R. A. and Frye, R. A. (1982). Relationship between $Ca^{2+}$ uptake and catecholamine secretion in primary dissociated cultures of adrenal modulla. J. Neurochem. 39, 635-640 https://doi.org/10.1111/j.1471-4159.1982.tb07940.x
  21. Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125 https://doi.org/10.1007/BF02974085
  22. Lim, D. Y., Yoon, J. K. and Moon, B. (1994). Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J. Pharmacol. 30, 87-100
  23. Lovenberg, T. W., Brewster, W. K., Mottola, D. M., Lee, R. C., Riggs, R. M., Nichols, D. E., Lewis, M. H. and Mailman, R. B. (1989). Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist. Eur. J. Pharmacol. 166, 111-113 https://doi.org/10.1016/0014-2999(89)90690-0
  24. McGehee, D. S. and Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521-546 https://doi.org/10.1146/annurev.ph.57.030195.002513
  25. Sawaguchi, T. and Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science. 251, 947-950 https://doi.org/10.1126/science.1825731
  26. Schechter, M. D. (1995). The discriminative properties of the D1 dopamine agonist dihydrexidine in the rat. Psychopharmacology. 119, 79-84 https://doi.org/10.1007/BF02246057
  27. Schoors, D. F., Vauquelin, G. P., De Vos, H., Smets, G., Velkeniers, B., Vanhaelst, L. and Dupont, A. G. (1991). Identification of a $D_1$ dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br. J. Pharmacol. 103, 1928-1934 https://doi.org/10.1111/j.1476-5381.1991.tb12354.x
  28. Seamans, J. K., Floresco, S. B. and Phillips, A. G. (1995). Selective impairment on a delayed radial arm task following local administration of a $D_1$, but not a $D_1$, antagonist into the prefrontal cortex. Soc. Neurosci. Abstr. 21, 1942
  29. Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J. Biol. Chem. 264, 17816-17823
  30. Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  31. Swope, S. L., Moss, S. J., Blackstone, C. D. and Huganir, R. L. (1992). Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J. 6, 2514-2523 https://doi.org/10.1096/fasebj.6.8.1375568
  32. Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd ed. pp. 132. Speringer-Verlag, New York
  33. Undie, A. S. and Friedman, E. (1990). Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J. Pharmacol. Exp. Ther. 253, 987-992
  34. Villanueva, M. and Wightman, R. M. (2007). Facilitation of quantal release induced by a D1-like receptor on bovine chromaffin cells. Biochemistry 46, 3881-3887 https://doi.org/10.1021/bi602661p
  35. Wada, A., Takara, H., Izumi, F., Kobayashi, H. and Yanagihara, N. (1985). Influx of $^{22}Na$ through acetylcholine receptor associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15, 283-292 https://doi.org/10.1016/0306-4522(85)90135-6
  36. Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 https://doi.org/10.1113/jphysiol.1981.sp013676
  37. Williams, G. V. and Goldman-Rakic, P. S. (1995). Blockade of dopamine $D_1$ receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376, 572-575 https://doi.org/10.1038/376572a0