Influence of Hypoxic Exercise at Head Down Tilt on Cardiovascular Responses

머리하향기울기 자세에서 운동 중 저산소호흡이 심혈관계반응에 미치는 영향

  • Received : 2009.06.14
  • Accepted : 2009.07.01
  • Published : 2009.07.01

Abstract

The purpose of this study was to examine the influence of hypoxic exercise at head down tilt (HDT) on cardiovascular responses. Eight men ($23{\pm}2$ yrs, $176{\pm}4$ cm, and $75{\pm}8$ kg) underwent four separate exercise testing sessions; seated normoxia (SN), seated hypoxia (SH), HDT normoxia (HN), and HDT hypoxia (HH). Each participant performed the leg cycling at predetermined 40% of maximal aerobic capacity relevant to each posture for 15 min. Heart rate was higher in SH than SN and higher also in HH than SH (p<0.05). Blood oxygen saturation was lower in SH than SN (p<0.05). During resting, diastolic blood pressure and mean arterial pressure was significantly lower in HDT than seated posture (p<0.05). No differences were found between conditions in hemoglobin and hematocrit and electrolytes including, sodium, potassium, and chloride. Lactate was higher in SH than SN. In conclusion, there was no effect for cardiovascular responses to duplicate stimuli both hypoxia and posture.

본 연구는 미세중력 모델인 머리하향기울기(Head Down Tilt; HDT) 자세에서 운동 중저산소호흡이 심혈관계 반응에 미치는 영향을 알아보는데 있었다. 8명의 건강한 남성($23{\pm}2$ 세, 신장 $176{\pm}4$ cm, 체중 $75{\pm}8$ kg)은 4가지 조건(앉은 자세에서 정상공기 호흡: SN, 앉은 자세에서 13% 산소호흡; SH, HDT 자세에서 정상공기 호흡; SH, HDT 자세에서 13% 산소호흡; HH)에서 최대산소섭취량의 약 40% 운동강도로 15분간 싸이클링을 실시하였다. 심박수는 SH그룹이 SN그룹보다 높았고(p<0.05), HH그룹이 SH그룹보다 높게 나타났다(p<0.05). 혈중산소포화도는 SH그룹이 SN그룹보다 유의한 감소를 나타내었다(p<0.05). 이완기혈압(p<0.05) 및 평균동맥압(p<0.05)은 안정시 앉은 자세에서보다 HDT 자세에서 유의하게 낮아졌다. 체액변인인 Hb, Hct과 전해질 변인인 나트륨, 칼륨, 염소는 모든 그룹에서 차이가 나타나지 않았다(p>0.05). 대사적 변인 중 Lactate는 SH그룹이 SN그룹보다 유의한 증가를 나타내었다(p<0.05). 결론적으로, 저산소호흡과 자세의 이중자극은 심혈관계반응에 영향을 주지 않았다.

Keywords

References

  1. 이대택, 서용석, 차광석(2007). 머리하향기울기 자세에서 운동 중 더위자극과 저산소호흡이 체온, 체액, 대사반응에 미치는 영향.
  2. Alfrey, C. P., Udden, M. M., Huntoon, C. L., & Driscoll, T. (1996). Destruction of newly released red blood cells in space flight. Medicine and Science in Sports and Exercise, 28, 42-44.
  3. Capelli, C., Antonutto, G., Cautero, M., Tam, E., & Ferretti, G. (2008). Metabolic and cardiovascular responses during sub-maximal exercise in humans after 14 days of head-down tilt bed rest and inactivity. European Journal of Applied Physiology, 5, 212-220.
  4. Favret, F., & Richalet, J. P. (2007). Exercise and hypoxia: the role of the autonomic nervous system. Respiratory Physiology and Neurobiology, 30, 280-286.
  5. Fellmann, N. (1992). Hormonal and plasma volume aleration flowing endurance exercise. Sports Medicine, 13, 37-49. https://doi.org/10.2165/00007256-199213010-00004
  6. Fritsch-Yelle, J. M., Charles, J. B., Jones, M. M., Beightil, L. A., & Eckberg, D.L. (1994). Spaceflight alters automic regulation on arterial pressure in human. Journal of Applied Physiology, 77, 1776-1783. https://doi.org/10.1152/jappl.1994.77.4.1776
  7. Grover, R. F., Weil, J. V., & Reeves, J. T. (1986). Cardiovascular adaptation to exercise at high altitude. Exercise and Sport Sciences Reviews, 14, 269-302.
  8. Halliwill, J. R., & Minson C. T. (2002). Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. Journal of Applied Physiology, 93(3), 857-864. https://doi.org/10.1152/japplphysiol.01103.2001
  9. Hume, K. M., & Ray, C. A. (1999). Sympathetic responses to head-down rotations in humans. Journal of Applied Physiology, 86, 1971-1976. https://doi.org/10.1152/jappl.1999.86.6.1971
  10. Insalaco, G., Romano S., Salvaggio, A., Braghiroli, A., Lanfranchi P., Patruno, V., Donner, C. F., & Bonsignore, G. (1996). Cardiovascular and ventilatory response to isocapnic hypoxia at sea level and at 5,050 m. Journal of Applied Physiology, 80, 1724-1730 https://doi.org/10.1152/jappl.1996.80.5.1724
  11. Katayama, K., Sato, Y., Morotome, Y., Shima, N., Ishida, K., Mori, S., & Miyamura, M. (2000). Cardiovascular response to hypoxia after endurance training at altitude and sea level and after detraining. Journal of Applied Physiology, 88(4), 1221-7.
  12. Lampe, L., Wienhold, K., Meyer, G., Baisch, F., Maass, H., Hollmann, W., & Rost, R. (1992). Effects of simulated microgravity (HDT) on blood fluidity. Journal of Applied Physiology, 73(4), 1366-1369. https://doi.org/10.1152/jappl.1992.73.4.1366
  13. Leach, C. S. (1987). Fluid control meachnisms in weightlessness. Aviation, Space, and Environmental Medicine, 58, 74-79.
  14. Loeppky, J. A., Scotto, P., Chick, T. W., & Luft, U. C. (1990). Effect of acute hypoxia on cardiopulmonary responses to head-down tilt. Aviation, Space, and Environmental Medicine, 61, 785-794.
  15. Monahan, K. D., & Ray, C. A. (2002). Limb neurovascular control during altered otolithic input in humans. Journal of Physiology, 538, 303-308. https://doi.org/10.1113/jphysiol.2001.013131
  16. Nelson, P. B., Ellis, D., Fu, F., Bloom, M. D., & O'Malley, J. (1989). Fluid and electrolyte balance during a cool weather marathon. American Journal of Sports Medicine, 17, 770-772. https://doi.org/10.1177/036354658901700608
  17. Prisk, G. K., Fine, J. M., Elliott, A. R., & West, J. B. (2002). Effect of 6 degree head-down tilt on cardio pulmonary function: comparison with microgravity. Aviation, Space, and Environmental Medicine, 73, 8-16.
  18. Querido, J. S., & Sheel, A. W. (2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37(9), 765-782. https://doi.org/10.2165/00007256-200737090-00002
  19. Sandoval, D. A., & Matt, K. S. (2003). Effects of the oral contraceptive pill cycle on physiological responses to hypoxic exercise. High Altitude Medicine and Biology, 4(1), 61-72. https://doi.org/10.1089/152702903321488997
  20. Savard, G. K., Areskog, N. H., & Saltin, B. (1995). Cardiovascular response to exercise in humans following acclimatization to extreme altitude. Acta Physiologica Scandinavica, 154(4), 499-509. https://doi.org/10.1111/j.1748-1716.1995.tb09935.x
  21. Sawin, C. F., Rummel, J. A., & Michael, E. L. (1975). Instrumented personal exercise during longduration space flighe flighe flighpace, and Environmental Medicine, 46, 394-400.
  22. Sawka, M. N., Wenger, C. B., & Pandolf, K. B. (1996). Thermoregulatory responses to acute exercise-heat stress and heat acclimation. In: Handbook of Physiology, Section 4: Environmental Physiology, C. M. Blatteis and M. J. Fregly. New York: Oxford University Press for the American Physiological Society, 157-186.
  23. Shoemaker, J. K., Hogeman, C. S., Silber, D. H., Kristen, G., Michael, H., & Sinoway, L. I. (1998). Head-down tilt bed rest alters forearm vasodilator and vasoconstrictor responses. Journal of Applied Physiology, 84, 1756-1762. https://doi.org/10.1152/jappl.1998.84.5.1756
  24. Soubiran, C., Harant, I., de Glisezinski, I., Beauville, M., Crampes, F., Riviere, D., & Garrigues, M. (1996). Cardio-respiratory changes during the onset of head-down tilt. Aviation, Space, and Environmental Medicine, 67(7), 648-653.
  25. Thornton, W. E., & Rummel, J. A. (1977). Muscular deconditioning and its prevention in space flight. In RS., Johnson & SF. Dielein(Eds). Biomedical results from Skylap. National Aeronautics and Space Administration, 33, 191-197.
  26. Whitson, P. A., Cintron, N. M., Pietrzyk, R. A., Scotto, P., & Loeppky, J. A. (1994). Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis. Journal of Clinical Pharmacology, 34(5), 427-433. https://doi.org/10.1002/j.1552-4604.1994.tb04983.x