DOI QR코드

DOI QR Code

Effect of Ambient Gases on the Characteristics of ITO Thin Films for OLEDs

  • Lee, Yu-Lim (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Lee, Kyu-Mann (Department of Materials Engineering, Korea University of Technology and Education)
  • 발행 : 2009.12.31

초록

We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of ITO thin films intended for use as anode contacts in OLED (organic light emitting diodes) devices. These ITO thin films are deposited by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at $300{^{\circ}C}$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.5 sccm to 5 sccm and from 0.01 sccm to 0.25 sccm, respectively. The intensity of the (400) peak in the ITO thin films increased with increasing $O_2$, flow rate whilst the (400) peak was nearly invisible in an atmosphere of Ar+$H_2$. The electrical resistivity of the ITO thin films increased with increasing $O_2$ flow rate, whereas the electrical resistivity decreased sharply under an Ar+$H_2$ atmosphere and was nearly similar regardless of the $H_2$ flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed an average transmittance of over 80% in the visible range. The OLED device was fabricated with different ITO substrates made with the configuration of ITO/$\alpha$-NPD/DPVB/$Alq_3$/LiF/Al in order to elucidate the performance of the ITO substrate. Current density and luminance of OLED devices with ITO thin films deposited in Ar+$H_2$ ambient gas is the highest among all the ITO thin films.

키워드

참고문헌

  1. J. H. Shin, S. H. Shin, and J. I. Park , J. Appl. Phys. 89, 5199 (2001) https://doi.org/10.1063/1.1357470
  2. Z. K. Tang, G. K. L. Wong, P. Yu. M. kavasaki, A.Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998) https://doi.org/10.1063/1.121620
  3. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films 369, 431 (2003)
  4. H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. 79, 284 (2001) https://doi.org/10.1063/1.1383568
  5. F. K. Shan and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004) https://doi.org/10.1016/S0955-2219(03)00490-4
  6. J. Hinze and K. Ellmer, J. Appl. Phys. 88, 2443 (2000) https://doi.org/10.1063/1.1288162
  7. D. Song and A.G. Aberle, J. Xia, Appl. Surf. Sci. 195, 91 (2002) https://doi.org/10.1016/S0169-4332(02)00611-6
  8. F. Zhu, K. Zhang, E. Guenther, and C. S. Jin, Thin Solid Films, 363, 314 (2000) https://doi.org/10.1016/S0040-6090(99)01003-2
  9. H. H. Kim and S. H. Shin, Trans. Electr. Electron. Mater. 5, 153 (2004) https://doi.org/10.4313/TEEM.2004.5.4.153
  10. M. Rottman and K.-H. Heckner, J. Phys. D: Appl. Phys. 28, 1448 (1995) https://doi.org/10.1088/0022-3727/28/7/024
  11. C. G. Choi and K. No, Thin Solid Films, 258, 274 (1995) https://doi.org/10.1016/0040-6090(94)06354-0
  12. R. Das, K. Adhikary, and S. Ray, Appl. Surf. Sci. 253, 6068 (2007) https://doi.org/10.1016/j.apsusc.2007.01.107
  13. S. I. Jun and T. E. Mcknight, Thin Solid Films, 476, 59 (2005) https://doi.org/10.1016/j.tsf.2004.09.011
  14. D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei, and C. Sun, Phys. Lett. A, 346, 148 (2005) https://doi.org/10.1016/j.physleta.2005.07.080

피인용 문헌

  1. Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays vol.17, pp.1, 2016, https://doi.org/10.4313/TEEM.2016.17.1.33
  2. Surface treatments of indium tin oxide films by using high density plasma vol.519, pp.20, 2011, https://doi.org/10.1016/j.tsf.2011.04.076
  3. Nanoscale Investigation of Grain Growth in RF-Sputtered Indium Tin Oxide Thin Films by Scanning Probe Microscopy vol.43, pp.11, 2014, https://doi.org/10.1007/s11664-014-3212-4
  4. Dry etching characteristics of TiN thin films in CF4/BCl3/N2 plasma vol.520, pp.6, 2012, https://doi.org/10.1016/j.tsf.2011.10.013
  5. Indium Tin Oxide Films with Low Resistivity at Room Temperature Using DC Magnetron Sputtering with Grid Electrode vol.55, pp.3, 2014, https://doi.org/10.2320/matertrans.M2013316
  6. RF magnetron sputtered ITO:Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells vol.20, pp.3, 2014, https://doi.org/10.1007/s12540-014-3001-x
  7. Effect of the base pressure achieved prior deposition on the main properties of ZnO:Al films obtained by DC magnetron sputtering at room temperature for electrical contact use vol.35, pp.2, 2017, https://doi.org/10.1116/1.4974918
  8. Re-crystallization of ITO films after carbon irradiation vol.392, 2017, https://doi.org/10.1016/j.apsusc.2016.09.108
  9. Control of preferred (222) crystalline orientation of sputtered indium tin oxide thin films vol.570, 2014, https://doi.org/10.1016/j.tsf.2014.08.041
  10. Effects of CW CO<sub>2</sub> Laser Annealing on Indium Tin Oxide Thin Films Characteristics vol.04, pp.04, 2014, https://doi.org/10.4236/snl.2014.44012
  11. Effect of passivation layer on InGaZnO thin-film transistors with hybrid silver nanowires as source and drain electrodes vol.54, pp.8, 2015, https://doi.org/10.7567/JJAP.54.081101
  12. Film thickness effect on fractality of tin-doped In2O3 thin films vol.11, pp.5, 2015, https://doi.org/10.1007/s13391-015-4280-1
  13. Highly transparent RF magnetron-sputtered indium tin oxide films for a-Si:H/c-Si heterojunction solar cells amorphous/crystalline silicon vol.24, 2014, https://doi.org/10.1016/j.mssp.2014.02.044
  14. Vapor-Induced Improvements in Field Effect Mobility of Transparent a-IGZO TFTs vol.3, pp.9, 2014, https://doi.org/10.1149/2.011409jss