References
- T. L. Phan, Y. K. Sun, R. Vincent, D. Cherns, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1633 (2008) https://doi.org/10.3938/jkps.52.1633
- Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 87, 153504 (2005) https://doi.org/10.1063/1.2089176
- P. H. Ngan, N. Q. Tien, D. T. Dat, P. V. Nho, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1594 (2008) https://doi.org/10.3938/jkps.52.1594
- V. Craciun, J. elders, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett. 65, 2963 (1994) https://doi.org/10.1063/1.112478
- M. Abouzaid, P. Tailpied, P. Ruterana, C. Liu, B. Xiao, S. J. Cho, Y. T. Moon, and H. Morkoc, Superlatta. Microstruct. 39, 387 (2005) https://doi.org/10.1016/j.spmi.2005.08.064
- S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005) https://doi.org/10.1063/1.1940137
- D. K. Hwang, K. H. Bang, M. C. Jeong, and J. M. Myoung, J. Cryst. Growth, 254, 449 (2003) https://doi.org/10.1016/S0022-0248(03)01205-3
- J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth, 247, 119 (2003) https://doi.org/10.1016/S0022-0248(02)01907-3
- R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, and J. R. Ramos-Barrado, Thin Solid Films, 426, 68 (2003) https://doi.org/10.1016/S0040-6090(02)01331-7
- R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, and A. Foucaran, Mater. Sci. Eng. B, 97, 68 (2003) https://doi.org/10.1016/S0921-5107(02)00406-3
- C. S. Son, S. M. Kim, Y. H. Kim, S. I. Kim, Y. T. Kim, K. H. Yoon, I. H. Choi, and H. C. Lopez, J. Korean. Phys. Soc. 45, S685 (2004)
- S. Cho, J. Korean. Phys. Soc. 49, 985 (2006)
- L. Zhu, Z. Ye, F. Zhuge, G. Yuan, and J. Lu, Surf. Coat. Technol. 198, 354 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.076
- S. Bose, S. Kim, S. H. Jeong, S. S. Kim, and B. T. Lee, Semicond. Sci. Technol. 19, L29 (2004) https://doi.org/10.1088/0268-1242/19/3/L06
- H. W. Kim and N. H. Kim, Mater. Sci. Eng. B, 103, 297 (2003) https://doi.org/10.1016/S0921-5107(03)00281-2
- Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films, 447/448, 56 (2004) https://doi.org/10.1016/j.tsf.2003.09.022
- F. Yakuphanoglu, M. Sekerci, and O. F. Ozturk, Opt. Comm. 239, 275 (2004) https://doi.org/10.1016/j.optcom.2004.05.038
- Y. Liu and J. Lian, Appl. Surf. Sci. 253, 3727 (2007) https://doi.org/10.1016/j.apsusc.2006.08.012
Cited by
- Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium vol.115, pp.9, 2014, https://doi.org/10.1063/1.4867036
- Influence of substrate temperature on properties of nc ZnO–SiOx thin films grown by rf co-sputter deposition vol.639, 2015, https://doi.org/10.1016/j.jallcom.2015.03.192
- Influence of Mg doping on the properties of ZnO films prepared on c-cut sapphire by sputtering vol.67, 2014, https://doi.org/10.1016/j.spmi.2014.01.007
- UV-treated ZnO films for liquid crystal alignment vol.6, pp.57, 2016, https://doi.org/10.1039/C6RA07454E
- Characterization of Metal–Insulator–Semiconductor Capacitor with Poly(methyl methacrylate):Titanium Dioxide as Insulator vol.52, pp.6S, 2013, https://doi.org/10.7567/JJAP.52.06GG02
- Optical and electrical properties of CuO thin films deposited at several growth temperatures by reactive RF magnetron sputtering vol.19, pp.6, 2013, https://doi.org/10.1007/s12540-013-6030-y
- Effects of rapid thermal annealing on the properties of In2O3 thin films grown on glass substrate by rf reactive magnetron sputtering vol.89, 2012, https://doi.org/10.1016/j.mee.2011.03.147
- Effects of Substrate and Annealing Temperatures on the Properties of SrWO4:Dy3+, Eu3+ Phosphor Thin Films vol.26, pp.10, 2016, https://doi.org/10.3740/MRSK.2016.26.10.577
- Effect of substrate temperature on the properties of copper nitride thin films deposited by reactive magnetron sputtering vol.12, 2012, https://doi.org/10.1016/j.cap.2012.05.033
- Structural, optical, and electrical properties of RF-sputtered indium oxide thin films vol.60, pp.12, 2012, https://doi.org/10.3938/jkps.60.2058
- RF magnetron sputtered ITO:Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells vol.20, pp.3, 2014, https://doi.org/10.1007/s12540-014-3001-x
- On the reduced electrical conductivity of radio-frequency sputtered doped ceria thin film by elevating the substrate temperature vol.16, pp.3, 2016, https://doi.org/10.1016/j.cap.2015.12.011
- Microstructure-related piezoelectric properties of a ZnO film grown on a Si substrate vol.42, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2016.07.192
- Effect of nitrogen flow ratio on the structural and optical properties of aluminum nitride thin films vol.326, pp.1, 2011, https://doi.org/10.1016/j.jcrysgro.2011.01.092
- Synthesis and some surface studies of laminated ZnO/TiO2 transparent bilayer by two-step growth vol.44, 2016, https://doi.org/10.1016/j.mssp.2015.12.024
- Exploration of Wettability and Optical Aspects of ZnO Nano Thin Films Synthesized by Radio Frequency Magnetron Sputtering vol.6, 2016, https://doi.org/10.5772/62804
- Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication vol.390, 2016, https://doi.org/10.1016/j.apsusc.2016.08.081
- Influence of power and temperature on properties of sputtered AZO films vol.620, 2016, https://doi.org/10.1016/j.tsf.2016.08.073
- Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application vol.25, pp.5, 2014, https://doi.org/10.1007/s10854-014-1868-4
- Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique vol.13, pp.2, 2012, https://doi.org/10.1088/1468-6996/13/2/025003
- Influence of Oxygen Flow Ratio on the Properties of In2O3Thin Films Grown by RF Reactive Magnetron Sputtering vol.19, pp.3, 2010, https://doi.org/10.5757/JKVS.2010.19.3.224
- Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation vol.4, pp.7, 2017, https://doi.org/10.1088/2053-1591/aa7e40
- Effect of growth temperature on structural, electrical, and optical properties of Gd-doped zinc oxide films vol.211, pp.3, 2014, https://doi.org/10.1002/pssa.201330345
- Characterization of zinc oxide films deposited in helium–oxygen and argon–helium–oxygen atmospheres by sputtering vol.620, 2016, https://doi.org/10.1016/j.tsf.2016.08.074
- Structural, Optical, and Electrical Properties of In2O3Thin Films Deposited on Various Buffer Layers vol.25, pp.7, 2012, https://doi.org/10.4313/JKEM.2012.25.7.491
- EFFECTS OF SUBSTRATE TEMPERATURE ON STRUCTURAL, OPTICAL AND SURFACE MORPHOLOGICAL PROPERTIES OF PULSED LASER DEPOSITED ZnO THIN FILMS vol.20, pp.03n04, 2013, https://doi.org/10.1142/S0218625X13500327
- Growth of ZnO nanorod arrays by one-step sol–gel process vol.80, pp.2, 2016, https://doi.org/10.1007/s10971-016-4131-z
- Influence of substrate temperature on the properties of spray deposited nanofibrous zinc oxide thin films vol.124, pp.1, 2018, https://doi.org/10.1007/s00339-017-1473-5
- Effect of deposition temperature on the properties of ZnO-doped indium oxide thin films vol.64, pp.10, 2014, https://doi.org/10.3938/jkps.64.1488
- Effect of deposition temperature on the properties of nitrogen-doped AZO thin films grown on glass by rf reactive magnetron sputtering vol.172, pp.3, 2010, https://doi.org/10.1016/j.mseb.2010.06.008
- Effect of substrate temperature on structural, morphological, optical and electrical properties of MnIn2S4 thin films prepared by nebulizer spray pyrolysis technique vol.48, 2016, https://doi.org/10.1016/j.mssp.2016.03.008
- Fast Formation of Surface Oxidized Zn Nanorods and Urchin-Like Microclusters vol.2014, 2014, https://doi.org/10.1155/2014/257494
- Highly transparent RF magnetron-sputtered indium tin oxide films for a-Si:H/c-Si heterojunction solar cells amorphous/crystalline silicon vol.24, 2014, https://doi.org/10.1016/j.mssp.2014.02.044
- Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment vol.309, 2014, https://doi.org/10.1016/j.apsusc.2014.04.158
- Synthesis and Emission Properties of CaMoO4:Tb3+Green Phosphor Powders and Thin Films vol.26, pp.4, 2013, https://doi.org/10.4313/JKEM.2013.26.4.264
- Improving electrical properties of sol-gel derived zinc oxide thin films by plasma treatment vol.120, pp.15, 2016, https://doi.org/10.1063/1.4964941
- Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique vol.524, 2012, https://doi.org/10.1016/j.tsf.2012.09.050
- Sputtered AZO Thin Films for TCO and Back Reflector Applications in Improving the Efficiency of Thin Film a-Si:H Solar Cells vol.9, pp.1, 2017, https://doi.org/10.1007/s12633-015-9350-3
- Structural, Electrical, and Optical Properties of Bismuth-doped Zinc-oxide Thin Films Grown by Radio-frequency Magnetron Sputtering vol.72, pp.8, 2018, https://doi.org/10.3938/jkps.72.943