DOI QR코드

DOI QR Code

Determination of Steel-Concrete Interface Parameters : Bonded and Unbonded Slip Tests

강-콘크리트 계면의 계면상수 결정 : 부착 및 비부착 슬립실험

  • Published : 2009.12.31

Abstract

Experiments on steel-concrete interface are performed to investigate and determine the mechanical roles and properties of interface parameters. The intrinsic different nature of bonded and unbonded interfaces are addressed based on the experimental observations that were obtained from two types of tests considering bonded and unbonded interfaces. The unbonded tests are performed for the specimens that are in unbonded when the initially bonded specimens are tested first. Four cases of lateral confinements including pure slip, and low and medium levels of lateral pressure are taken into account to investigate the effects of lateral confinements on interface behavior. It is shown that the maximum shear strengths, the levels of residual strengths and the Mode II fracture energy release rates are linearly related to the confinement levels. Based on the experimental evidences obtained from this study, the values of interface parameters required in a steel-concrete interface constitutive model will be presented in the companion paper.

강-콘크리트 계면거동의 성질을 정의하는 계면변수를 파악하고, 구성모델의 성격을 정의하는 구성변수의 물리적 특성 파악과 값의 크기를 결정하기 위해 강-콘크리트 계면에 대한 거동실험을 수행하였다. 구성변수는 포괄적인 적용을 목적으로 부착계면 뿐만 아니라 비부착계면의 거동까지 포함하기 위해 최근에 Mohr-Coulomb 파괴규준에 근거하여 제안된 구성모델을 기준하여 결정하였으며, 구속압을 받는 계면의 취성으로부터 연성까지의 파괴거동 성질을 고려하기 위해 낮은 구속압 및 중간크기의 구속압을 포함하는 네 종류의 구속압을 고려하였다. 실험 결과에 대한 분석을 통해 최대평균전단응력과 잔류응력 및 모드 II 파괴에너지 방출률과 구속압 간의 관계는 각 경우가 선형적 관계에 있음을 확인하였다. 이 논문에서 얻어진 실험 결과에 근거하여 이어지는 후속 논문에서는 해석적 방법에 의한 계면상수 값의 결정과 결정된 계면상수 값을 이용한 계면유한요소해석을 수행하여 계면상수 값의 적절성을 검증하였다.

Keywords

References

  1. Rabbat, B. G. and Russell, H. G., “Friction Coeffcient of Steel on Concrete or Grout,” Journal of Structural Engineering, ASCE, Vol. 111, No. 3, 1985, pp. 505-515 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
  2. Chiew, S. P., Dong, Y. X., and Sho, C. K., “Concrete-steel Plate Interface Characteristics for Composite Construction,” Computing Developments in Civil and Structural Engineering, 1999, pp. 35-40
  3. Shakir-Khalil, H., “Pushout Strength of Concrete-filled Steel Hollow Sections,” The Structural Engineer, Vol. 71, No. 13, 1993, pp. 230-233
  4. Shakir-Khalil, H., “Resistance of Concrete-filled Steel Hollow Sections,” The Structural Engineer, Vol. 71, No. 13, 1993, pp. 234-243
  5. Shakir-Khalil, H. and Hassan, N. K. A., “Push-out Resistance of Concrete-filled Tubes,” Tubular Structures, Grundy, P., Holgate,A., and Wong. W. (eds), Melbourne, Australia, A.A. Balkema, Rotterdam, The Netherlands, 1994, pp. 285-291
  6. Chajes, M. J., Finch, W. W. Jr., Januszka, T. F., and Thomson, T. A. Jr., “Bond and Force Transfer of Composite Material Plates Bonded to Concrete,” ACI Struct. J., Vol. 93, No. 2, 1996, pp. 208-217
  7. Barnes, R. A. and Mays, G. C., “The Transfer of Stress through a Steel to Concrete Adhesive Bond,” International Journal of Adhesion & Adhesives, Vol. 21, 2001, pp. 495-502 https://doi.org/10.1016/S0143-7496(01)00031-8
  8. Kantona, M. G., “A Simple Contact-Friction Interface Element with Applications to Buried Culverts,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 7, No. 3, 1983, pp. 371-384 https://doi.org/10.1002/nag.1610070308
  9. Stankowski, T., Runesson, K., and Sture, S., “Fracture and Slip of Interfaces in Cementitious Composites. I: Characteristics,” Journal of Engineering Mechanics, ASCE, Vol. 119, No. 2, 1993, pp. 315-327 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(315)
  10. Stankowski, T., Runesson, K., and Sture, S., “Fracture and Slip of Interfaces in Cementitious Composites II : Implementation,” Journal of Engineering Mechanics, Vol. 119, No. 2, 1993, pp. 315-327 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(315)
  11. Lotfi, H. R. and Shing, P. B., “Interface Model Applied to Fracture of Masonry Structures,” Journal of Structural Engineering, ASCE, Vol. 120, No. 1, 1994, pp. 63-79 https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(63)
  12. Carol, I., Prat, P. C., and Lopez, C. M., “Normal/Shear Cracking Model : Application to Discrete Crack Analysis,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 8, 1997, pp. 765-773 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:8(765)
  13. 주영태, 이용학, “강-콘크리트 계면파괴에 관한 비선형 유한요소해석,” 한국콘크리트학회 가을 학술발표회 논문집, 16권, 2호, 2004, pp. 105-108
  14. 주영태, 부착 및 슬립을 고려한 강-콘크리트 계면거동의 점진적 유한요소해석, 건국대학교 토목공학과, 박사학위논문, 2005
  15. Plesha, M. E., “Constitutive Models for Rock Discontinuities with Dilatancy and Surface Degradation,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 11, No. 4, 1987 pp. 345-362 https://doi.org/10.1002/nag.1610110404
  16. Beer, G., “An Isoparametric Joint/Interface Element for Finite Element Analysis,” International Journal for Numerical Methods in Engineering, Vol. 21, No. 4, 1985, pp. 585-600 https://doi.org/10.1002/nme.1620210402

Cited by

  1. Interface Behavior of Concrete Infilled Steel Tube Composite Beam vol.18, pp.5, 2014, https://doi.org/10.11112/jksmi.2014.18.5.009