DOI QR코드

DOI QR Code

Prediction Model of Unbonded Tendon Stresses in Post-Tensioned Members

포스트텐션 부재에서 비부착긴장재의 응력 거동 예측 모델

  • Kim, Kang-Su (Dept. of Architectural Engineering, University of Seoul) ;
  • Lee, Deuck-Hang (Dept. of Architectural Engineering, University of Seoul) ;
  • Kal, Gyung-Wan (Dept. of Architectural Engineering, University of Seoul)
  • 김강수 (서울시립대학교 건축학부) ;
  • 이득행 (서울시립대학교 건축학부) ;
  • 갈경완 (서울시립대학교 건축학부)
  • Published : 2009.12.31

Abstract

As the demand on long span structures increases more in recent years, the excessive deflection, in addition to the ultimate strength, in horizontal members becomes a very important issue. For this reason, as an alternative method to effectively solve the deflection problems, the application of post-tensioned structural system with unbonded tendon increases gradually. However, most of the existing researches on post-tensioned members with unbonded tendons (UPT) focused on the ultimate flexural strength, which would be impossible or improper to check serviceability such as deflections. Therefore, this study aims at proposing a stress prediction model for unbonded tendons that is applicable to the behavior of UPT members from the very initial loading stages, post-cracking states, and service to ultimate conditions. The applicability and accuracy of the proposed model were also evaluated comparing to the existing test results from literature. Based on such comparison results, it was verified that the proposed model provided very good predictions on tendon stresses of UPT members at various loading stages regardless their different characteristics; wide range of reinforcement index, different loading patterns, and etc. The proposed model especially well considered the effect of various loading types on stress increases of unbonded tendons, and it was also very suitable to apply on the over-reinforced members that easily happened during strengthening/repairing work.

최근 장경간에 대한 요구가 증가됨에 따라 수평부재는 극한강도 뿐만 아니라 과도한 처짐이 중요한 문제로 인식되고 있다. 따라서 건축물의 경우에 처짐을 해결할 수 있는 좋은 대안으로서 비부착긴장재를 사용한 포스트텐션 구조의 적용이 늘어가고 있다. 그러나 대부분의 기존 연구들은 비부착긴장재를 사용한 프리스트레스트 휨부재의 극한강도에 국한되고 있기 때문에 처짐과 같은 사용성 검토에는 적용이 불가능 하거나 매우 어려운 실정이다. 따라서 이 연구는 비부착긴장재를 사용한 포스트텐션 부재의 균열 전 초기 거동, 균열 후 및 사용하중 상태에서의 거동 및 극한강도까지 적용이 가능한 긴장재의 응력거동 예측모델을 제안하고, 기존 실험결과와의 비교를 통하여 제안 모델의 적용성 및 정확도를 검증하고자 하였다. 다양한 부재 특성을 가진 실험 결과와의 비교를 통하여 제안된 응력거동 예측모델은 보강지수 및 하중형상에 관계없이 하중단계별 긴장재의 응력 및 강도를 매우 정확하게 예측함을 확인할 수 있었다. 특히, 제안된 모델은 다양한 재하형태의 영향을 잘 반영하였으며, 휨 부재를 보강할 때 쉽게 발생할 수 있는 과보강 부재에 대해서도 무리없이 적용 할 수 있을 것으로 판단된다.

Keywords

References

  1. Collins, M. P. and Mitchell, D., Prestressed Concrete Structure, Prentice Hill, 1991, 766 pp
  2. ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary (ACI 318M-05),” American Concrete Institute, Farmington Hills, 2005, 436 pp
  3. American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications, Third Edition, AASHTO, Washington, DC, 2004, 1450 pp
  4. CAN3-A23.3-M94, Design of Concrete Structure, Canadian Standard Association, Rexdale, Ontario, 1994, 353 pp
  5. BSI 8110-85, Section 4.3.7.3: Structural Use if Concrete, British Standards Institution, London, 1985, 161 pp
  6. DIN 4227, “Part 6: Prestressed Concrete, Construction of Prestressed Concrete Member,” German Code, 1980, 365 pp
  7. NEN 3880, “Part H: Regulations for Concrete,” Dutch Code, 1984, Section 503.1.3
  8. 한국콘크리트학회, 콘크리트구조설계기준 해설, 한국콘크리트학회, 2007, 523 pp
  9. Mojtahedi, S. and Gamble, W. L., “Ultimate Steel Stresses in Unbonded Prestressed Concrete,” ASCE, Journal of Structural Division, Vol. 104, No. ST7, 1978, pp. 1159-1165
  10. Warwaruk, J., Sozen, M. A., and Siess, C. P., “Investigation of Prestressed Concrete for Highway Bridges, Part.: Strength and Behavior in Flexure of Prestressed Beam,” Bulletin, Engineering Experiment Station, University of Illinois, Urbana, Ill, No. 464, 1962. 105 pp
  11. Janney, J. R., Hognestad, E., and Mchenry, D., “Ultimate Flexural Strength of Prestressed and Conventionally Reinforced Concrete Beam,” ACI Structural Journal, Title No. 52-37, 1956, pp. 601-620
  12. Du, G. and Tao, X., “Ultimate Stress of Unbonded Tendons in Partially Prestressed Concrete Beams,” PCI Journal, Vol. 30, No. 6, 1985, pp. 72-91 https://doi.org/10.15554/pcij.11011985.72.91
  13. Harajli, M. H. and Kanj, M. Y., “Ultimate Flexural Strength of Concrete Members Prestressed With Unbonded Tendons,” ACI Structural Journal, Vol. 88, No. 6, 1991, pp. 663-673
  14. Campbell, T. I. and Chouinard, K. L. “Influence of Non-prestressed Reinforcement on the Strength of Unbonded Partially Prestressed Concrete Member,” ACI Structural Journal, Vol. 88, No. 5, 1991, pp. 546-551
  15. Chakrabarti, P. R., “Ultimate Stress for Unbonded Post-Tensioning Tendons in Partially Prestressed Beam,” ACI Structural Journal, Vol. 92 No. 6, 1995, pp. 689-697
  16. 문정호, 임재형, 이창규, “비부착 프리스트레스트 보강재를 갖는 PSC 부재의 변위와 프리스트레스트 보강재 응력의 상관관계 및 변수별 효과,” 콘크리트학회 논문집, 14권, 2호, 2002, pp. 171-179 https://doi.org/10.4334/JKCI.2002.14.2.171
  17. Ozkul, O., Nassif, H., Tanchan, P., and Harajli, M. H., “Rational Approach for Predicting Stress in Beams with Unbonded Tendons,” ACI Structural Journal, Vol. 105, No. 3, 2008, pp. 338-347
  18. Tam, A. and Pannell, F. N., “The Ultimate Moment Resistance of Unbonded Partially Prestressed Reinforced Concrete,” Magazine of Concrete Research, Vol. 28, No. 97, 1976, pp. 203-208 https://doi.org/10.1680/macr.1976.28.97.203
  19. Lee, L. H., Moon, J. H., and Lim, J. H., “Proposed Methodology for Computing of Unbonded Tendon Stress at Flexural Failure,” ACI Structural Journal, Vol. 96, No. 6, 1999, pp. 1040-1048
  20. Harajli, M. H., “On the Stress in Unbonded Tendon at Ultimate: Critical Assessment and Proposed Change,” ACI Structural Journal, Vol. 103, No. 6, 2006, pp. 803-812
  21. Harajli, M. H., “Effect of Span-Depth Ratio on The Ultimate Steel Stress in Unbonded Prestressed Concrete Members,” ACI Structural Journal, Vol. 87, No. 3, 1990, pp. 305-312
  22. Naaman, A. E. and Alkhairi, F. M., “Stress at Ultimate in Unbonded Post Tensionning Tendons-Part 1: Evaluation of the State-of-the-Art,” ACI Structural Journal, Vol. 88, No. 5, 1991, pp. 641-651
  23. Naaman, A. E. and Alkhairi, F. M., “Stress at Ultimate in Unbonded Post Tensionning Tendons-Part 2: Proposed Methodology,” ACI Structural Journal, Vol. 88, No. 6, 1991, pp. 693-692
  24. Bondy, K. B., “Realistic Reqirements for Unbonded Post-Tensioning Tendons,” PCI Journal, Vol. 15, No. 1, 1970, pp. 50-59 https://doi.org/10.15554/pcij.02011970.50.59
  25. Au, F. T. K. and Du, J. S., “Prediction of Ultimate Stress in Unbonded Tendons,” Magazine of Concrete Research, Vol. 56, No. 1, 2004, pp. 1-11 https://doi.org/10.1680/macr.2004.56.1.1
  26. Macgregor, R. J. G., Kregor, M. E., and Breen, J. E., “Strength and Ductility of Three Span Externally Post-Tensioned Segmental Box Girder Bridge Model,” Research Report No. 365-3F, Center for Transportation Research, The University of Texas, Austin, Texas., 1989, 299 pp
  27. Robert-Wollmann, C. L., Kregor, M. E., Rogosky, D. M., and Breen, J. E., “Stress in External Tendons at Ultimate,” ACI Structural Journal, Vol. 102, No. 2, 2005, pp. 206-213
  28. Bui, D. K. and Niwa, J., “Prediction of Loading-Induced Stress in Unbonded Tendons at Ultimate,” Doboku Gakkai Ronbunshu E, Vol. 62, No. 2, 2006, pp. 428-443 https://doi.org/10.2208/jsceje.62.428
  29. Allouche, E. N., Campbell, T. I., Green, M. F., and Soudki, K. A., “Tendon Stress in Continuous Unbonded Prestressed Concrete Members-Part 1 : Parametric Study,” PCI Journal, Vol. 44, No. 1, 1999, pp. 86-93
  30. Allouche, E. N., Campbell, T. I., Green, M. F., and Soudki, K. A., “Tendon Stress in Continuous Unbonded Prestressed Concrete Members-Part 2 : Review of Literature,” PCI Journal, Vol. 44, No. 1 1999, pp. 60-73
  31. 박상렬, “외부 프리스트레싱으로 보강된 R.C 보에서 강재량 및 텐던깊이에 따른 프리스트레싱 강재의 극한응력,” 콘크리트학회 논문집, 15권, 4호, 2003, pp. 585-593 https://doi.org/10.4334/JKCI.2003.15.4.585
  32. 신경재, 김병준, “고장력 인장봉으로 보강된 RC보의 휨거동에 관한 연구,” 한국강구조학회논문집, 19권, 3호, 2007, pp. 259-270
  33. Tan, K. H. and Ng, C. K., “Effect of Deviators and Tendon Configuration on Behavior of Externally Prestressed Beams,” ACI Structural Journal, Vol. 88, No. 6, 1991, pp. 1-10
  34. Harajli, M. H. and Kanj, M. Y., “Service Load Behavior of Concrete Members Prestressed with Unbonded Tendons,” Journal of Structural Engineering, ASCE, Vol. 94, No. 1, 1997, pp. 2569-2589
  35. Harajli, M. H., Khairallah, N., and Nasif, H., “Externally Prestressed Members: Evaluation of Sencond-Order Effect,” Journal of Structural Engineering, ASCE, Vol. 125, No. 10, 1999, pp. 1151-1161 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1151)
  36. Sivaleepunth, C., Niwa, J., Bui, D. K., Tamura, S., and Hamada, Y., “Prediction of Tendon Stress and Flexural Strength of Externally Prestressed Concrete Beams,” Doboku Gakkai Ronbunshu E. Vol. 62, No. 1, 2006, pp. 260-273 https://doi.org/10.2208/jsceje.62.260
  37. Ozkul, O., Nasif, H. H., and Malhas, F., “Deflection Prediction and Cracking of Beams Prestressed with Unbonded Tendons,” Serviceability of Concrete: A Symposium Honoring Dr. E. G. Nawy, SP-225, American Concrete Institute, Farmington Hills, MI, 2005, pp. 93-118
  38. 임재형, 문정호, 이리형, “비부착 긴장재의응력에 영향을 미치는 중요변수에 대한 실험연구,” 콘크리트학회 논문집, 11권, 1호, 1999, pp. 209-219
  39. 이득행, 김강수, “포스트텐션 휨부재에서 비부착긴장재의 극한응력,” 콘크리트학회 논문집, 21권, 4호, 2009, pp. 489-500
  40. Mattok, A. H., “Flexural Strength of Prestressed Concrete Sections by Programable Calculator,” PCI Journal, Vol. 24, No. 1, 1979, pp. 32-54