DOI QR코드

DOI QR Code

Behavior and Capacity of Compression Lap Splice in Confined Concrete with Compressive Strength of 40 and 60 MPa

횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도

  • Chun, Sung-Chul (Architectural Technology Research Team, Daewoo Institute of Construction Technology, Daewoo E&C Co.,Ltd) ;
  • Lee, Sung-Ho (Architectural Technology Research Team, Daewoo Institute of Construction Technology, Daewoo E&C Co.,Ltd) ;
  • Oh, Bo-Hwan (Architectural Technology Research Team, Daewoo Institute of Construction Technology, Daewoo E&C Co.,Ltd)
  • Published : 2009.08.31

Abstract

A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement and bar size on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. The results of the tests with bar diameters of 22 and 29 mm show that there is no size effect of bar diameter on compression lap splice. Bond strength of small bar diameter may increase. However, large diameters of re-bars are used in compression member and the size effect of re-bars does not have to be considered in compression lap splice. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond. Because the stresses developed by bond in compression splice with transverse reinforcement are nearly identical to or less than those in tension splice with same transverse reinforcement, strength increment of compression splice is attributed to end bearing only.

현행 기준식에 따르면 초고강도 콘크리트에서는 철근 인장이음길이보다 압축이음길이가 더 길어지는 현상 이 발생된다. 횡보강근의 영향을 반영하면 이러한 경향은 더욱 심화된다. 실제 구조물에서 반드시 존재하는 횡보강근과 철근 지름의 영향을 40, 60 MPa 콘크리트에 대한 압축이음 실험을 통해 강도와 거동 특성을 분석하였다. 지름 22, 29 mm 에 대한 실험 결과 철근 지름의 영향은 없는 것으로 나타났다. 가는 지름의 철근에서는 이음강도의 증진이 기대될 수 있으나, 압축철근에는 주로 큰 지름의 철근이 사용되므로 압축이음에서는 철근 지름의 효과를 고려할 필요가 없을 것 으로 판단된다. 횡보강근이 있는 압축이음강도는 현행 설계기준과 비교할 때 100% 이상 크므로 횡보강근을 고려한 새 로운 설계기준식의 정립이 필요하다. 지압은 이음 단부에 배근된 횡보강근에 의해서만 강도가 향상되며, 이음구간에 배 근된 횡보강근에는 무관하다. 횡보강근량이 많을수록 부착에 의해 발현되는 강도는 거의 선형적으로 증가하며, 이음단 부에만 횡보강근을 배근해도 부착강도가 6% 향상되었다. 횡보강근이 배근된 경우 부착에 의해 발현되는 강도는 인장이 음에 비해 동등하거나 더 낮아지므로, 인장이음에 비해 압축이음의 강도 증진은 단부 지압 효과로만 설명될 수 있다.

Keywords

References

  1. Darwin, D., “Concrete Q&A-Splice Length Anomaly,”Concrete International, Vol. 27, No. 10, Oct. 2005, 96 pp.
  2. 천성철, 이성호, 오보환, “횡보강근 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도,” 콘크리트학회 논문집, 21권, 3호, 2009, pp. 291-302 https://doi.org/10.4334/JKCI.2009.21.3.291
  3. 한국콘크리트학회, 콘크리트구조설계기준 해설, 한국콘크리트학회, 2008, 523 pp.
  4. ACI Committee 408, “Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03),” American Concrete Institute, Farmington Hills, MI., USA, 2003, 49 pp.
  5. Cairns, J., “Strength of Compression Splices: A Reevaluation of Test Data,” ACI Journal, Vol. 82, No. 4, 1985, pp. 510-516
  6. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” American Concrete Institute, Farmington Hills, Mich., USA, 2008, 465 pp.
  7. CSA A23.3-04, “Design of Concrete Structures,” Canadian Standard Associate,” Ontario, Canada, 2004, 214 pp.
  8. NZS 3101:2006, “Concrete Structures Standard,” New Zealand Standard, Wellington, New Zealand, 2006
  9. Comite Euro-International du Beton, “CEB-FIP Model Code,”London, Thomas Telford, 1990, 437 pp.
  10. Canbay, E. and Frosch, R. J., “Bond Strength of Lap-Spliced Bars,” ACI Structural Journal, Vol. 102, No. 4, 2005, pp. 605-614
  11. Cairns, J. and Arthur, P. D., “Strength of Lapped Splices in Reinforced Concrete Columns,” ACI Journal, Proceedings, Vol. 76, No. 2, 1979, pp. 277-296
  12. Azizinamini, A., Chisala, M., and Ghosh, S. K., “Tension Development Length of Reinforcing Bars Embedded in High Strength Concrete,” Engineering Structures, Vol. 17, No. 7, 1995, pp. 512-522 https://doi.org/10.1016/0141-0296(95)00096-P
  13. Pfister, J. F. and Mattock, A. H., “High Strength Bars as Concrete Reinforcement, Part 5: Lapped Splices in Concentrically Loaded Columns,” Journal, PCA Research and Development Laboratories, Vol. 5, No. 2, 1963, pp. 27-40.
  14. Leonhardt, F. and Teichen, K.-T., Compression Joints of Reinforcing Bars (Drucke-St$\ddot{o}$sse von Bewehrungsst$\ddot{a}$ben), Deutscher Ausschuss f$\ddot{u}$r Stahlbeton, Berlin, 1972
  15. Arthur, P. D. and Cairns, J., “Compression Laps of Reinforcement in Concrete Colulmns,” The Structural Engineer, Vol. 56, No. 13, 1978, pp. 9-12, 19
  16. Orangun, C. O., Jirsa, J. O., and Breen, J. E., “A Reevaluation of Test Data on Developoment Length and Splices,”ACI Journal, Proceedings, Vol. 74, No. 3, 1977, pp. 114-122
  17. Furche, J. and Eligehausen, R., “Lateral Blow-Out Failure of Headed Studs Near a Free Edge,” Anchors in Concrete-Design and Behavior, SP-130, American Concrete Institute, Farmington Hills, MI, USA, 1991, pp. 235-252
  18. ACI Committee 349, “Commentary on Code Requirement for Nuclear Safety-Related Concrete Structures (ACI 349-97),” American Concrete Institute, Farmington Hills, MI, USA, 1997, 33 pp.