References
- Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spec. Rev. 2007, 26, 51-78 https://doi.org/10.1002/mas.20108
- Wu, Z.; Rodgers, R. P.; Marshall, A. G. J. Agric. Food Chem. 2004, 52, 5322-5328 https://doi.org/10.1021/jf049596q
- Cooper, H. J.; Marshall, A. G. J. Agric. Food Chem. 2001, 49, 5710-5718 https://doi.org/10.1021/jf0108516
- Wu, Z.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2002, 74, 1879-1883 https://doi.org/10.1021/ac011071z
- Wu, Z.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2004, 18, 1424-1428 https://doi.org/10.1021/ef049933x
- Kim, S.; Kaplan, L. A.; Hatcher, P. G. Limnol. Oceanogr. 2006, 51, 1054-1063 https://doi.org/10.4319/lo.2006.51.2.1054
- Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336-5344 https://doi.org/10.1021/ac034415p
- Marshall, A. G.; Rodgers, R. P. Acc. Chem. Res. 2004, 37, 53-59 https://doi.org/10.1021/ar020177t
- Marshall, A. G.; Rodgers, R. P. PNAS 2008, 105, 18090-18095 https://doi.org/10.1073/pnas.0805069105
- Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332 https://doi.org/10.1016/S1044-0305(99)00157-9
- Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. PNAS 2000, 97, 10313-10317 https://doi.org/10.1073/pnas.97.19.10313
- Kaur, P.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2006, 17, 459-468 https://doi.org/10.1016/j.jasms.2005.11.024
- Chen, L.; Yap, Y. L. J. Am. Soc. Mass Spectrom. 2008, 19, 46-54 https://doi.org/10.1016/j.jasms.2007.10.015
- Johnson, K. L.; Mason, C. J.; Muddiman, D. C.; Eckel, J. E. Anal. Chem. 2004, 76, 5097-5103 https://doi.org/10.1021/ac0497003
- McIlwain, S.; Page, D.; Huttlin, E. L.; Sussman, M. R. Bioinformatics 2007, 23, I328-I336 https://doi.org/10.1093/bioinformatics/btm198
- Park, K.; Yoon, J. Y.; Lee, S.; Paek, E.; Park, H.; Jung, H. J.; Lee, S. W. Anal. Chem. 2008, 80, 7294-7303 https://doi.org/10.1021/ac800913b
- Kim, S.; Rodgers, R. P.; Marshall, A. G. Int. J. Mass Spectrom. 2006, 251, 260-265 https://doi.org/10.1016/j.ijms.2006.02.001
Cited by
- The Improvement in Signal Integrity of FT-ICR MS vol.60, pp.1, 2011, https://doi.org/10.5370/KIEE.2011.60.1.201
- Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS vol.83, pp.11, 2011, https://doi.org/10.1021/ac200464q
- Planar Limit-Assisted Structural Interpretation of Saturates/Aromatics/Resins/Asphaltenes Fractionated Crude Oil Compounds Observed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.83, pp.15, 2011, https://doi.org/10.1021/ac2011685
- Molecular Characterization and Comparison of Shale Oils Generated by Different Pyrolysis Methods vol.26, pp.2, 2012, https://doi.org/10.1021/ef201517a
- Characterization of Crude Oils at the Molecular Level by Use of Laser Desorption Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry vol.84, pp.20, 2012, https://doi.org/10.1021/ac301615m
- Chemical profiles and hypoglycemic activities of mulberry leaf extracts vary with ethanol concentration vol.22, pp.5, 2013, https://doi.org/10.1007/s10068-013-0235-1
- Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level vol.27, pp.4, 2013, https://doi.org/10.1021/ef3015662
- Application of Atmospheric Pressure Photo Ionization Hydrogen/Deuterium Exchange High-Resolution Mass Spectrometry for the Molecular Level Speciation of Nitrogen Compounds in Heavy Crude Oils vol.85, pp.20, 2013, https://doi.org/10.1021/ac402157r
- Application of Phase Correction to Improve the Interpretation of Crude Oil Spectra Obtained Using 7 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.25, pp.1, 2014, https://doi.org/10.1007/s13361-013-0747-1
- Evaluation of Laser Desorption Ionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Study Metalloporphyrin Complexes vol.28, pp.11, 2014, https://doi.org/10.1021/ef500997m
- Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics vol.34, pp.2, 2014, https://doi.org/10.1002/mas.21438
- Optimization and Application of APCI Hydrogen–Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds vol.26, pp.9, 2015, https://doi.org/10.1007/s13361-015-1166-2
- Characterization of Petroleum Heavy Oil Fractions Prepared by Preparatory Liquid Chromatography with Thin-Layer Chromatography, High-Resolution Mass Spectrometry, and Gas Chromatography with an Atomic Emission Detector vol.30, pp.4, 2016, https://doi.org/10.1021/acs.energyfuels.6b00296
- Correlation among Petroleomics Data Obtained with High-Resolution Mass Spectrometry and Elemental and NMR Analyses of Maltene Fractions of Atmospheric Pressure Residues vol.30, pp.9, 2016, https://doi.org/10.1021/acs.energyfuels.6b01047
- Optimization and application of atmospheric pressure chemical and photoionization hydrogen–deuterium exchange mass spectrometry for speciation of oxygen-containing compounds vol.408, pp.12, 2016, https://doi.org/10.1007/s00216-016-9399-x
- Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds vol.28, pp.8, 2017, https://doi.org/10.1007/s13361-017-1678-z
- Interpreting Chemical Structures of Compounds in Crude Oil Based on the Tandem Mass Spectra of Standard Compounds Obtained at the Same Normalized Collision Energy vol.31, pp.7, 2017, https://doi.org/10.1021/acs.energyfuels.7b00882
- Extension of the Analytical Window for Characterizing Aromatic Compounds in Oils Using a Comprehensive Suite of High-Resolution Mass Spectrometry Techniques and Double Bond Equivalence versus Carbon Number Plot vol.31, pp.8, 2017, https://doi.org/10.1021/acs.energyfuels.7b00962
- Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines vol.23, pp.1, 2017, https://doi.org/10.1177/1469066717694286
- Hydrogen/deuterium exchange in mass spectrometry vol.37, pp.6, 2018, https://doi.org/10.1002/mas.21565
- Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O vol.29, pp.1, 2018, https://doi.org/10.1007/s13361-017-1831-8
- Current literature in mass spectrometry vol.45, pp.5, 2010, https://doi.org/10.1002/jms.1651
- Determining Collision Cross-Sections of Aromatic Compounds in Crude Oil by Using Aromatic Compound Mixture as Calibration Standard vol.40, pp.2, 2018, https://doi.org/10.1002/bkcs.11653
- Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel vol.3, pp.2, 2009, https://doi.org/10.5478/msl.2012.3.2.43
- Development and Application of a Software Tool for the Interpretation of Organic Mixtures' Spectra - Hydrogen Deuterium Exchange (STORM-HDX) to Interpret APPI HDX MS Spectra vol.35, pp.3, 2009, https://doi.org/10.5012/bkcs.2014.35.3.749
- Effective screening for the anti-hypertensive of selected herbs used in the traditional Korean medicines vol.59, pp.4, 2009, https://doi.org/10.1007/s13765-016-0190-7
- Themis: Batch Preprocessing for Ultrahigh-Resolution Mass Spectra of Complex Mixtures vol.89, pp.21, 2017, https://doi.org/10.1021/acs.analchem.7b02345
- Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil vol.89, pp.22, 2009, https://doi.org/10.1021/acs.analchem.7b02644
- Optimization and Application of Paper-Based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter vol.90, pp.20, 2018, https://doi.org/10.1021/acs.analchem.8b02668
- Analyzing Solid-Phase Natural Organic Matter Using Laser Desorption Ionization Ultrahigh Resolution Mass Spectrometry vol.91, pp.1, 2019, https://doi.org/10.1021/acs.analchem.8b04032
- Application of Online Liquid Chromatography 7 T FT-ICR Mass Spectrometer Equipped with Quadrupolar Detection for Analysis of Natural Organic Matter vol.91, pp.12, 2009, https://doi.org/10.1021/acs.analchem.9b00689
- Elucidating molecular level impact of peat fire on soil organic matter by laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry vol.411, pp.27, 2009, https://doi.org/10.1007/s00216-019-02108-2
- Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer vol.91, pp.22, 2009, https://doi.org/10.1021/acs.analchem.9b02255
- KairosMS: A New Solution for the Processing of Hyphenated Ultrahigh Resolution Mass Spectrometry Data vol.92, pp.5, 2009, https://doi.org/10.1021/acs.analchem.9b05113
- Molecular Level Investigation of Oil Sludge at the Bottom of Oil Tank in Ratawi Oil Field by Atmospheric Pressure Photo Ionization Ultrahigh‐resolution Mass Spectrometry vol.41, pp.4, 2020, https://doi.org/10.1002/bkcs.11991
- Reproducibility of Crude Oil Spectra Obtained with Ultrahigh Resolution Mass Spectrometry vol.92, pp.14, 2009, https://doi.org/10.1021/acs.analchem.0c00865
- Comprehensive Lists of Internal Calibrants for Ultrahigh-Resolution Mass Spectrometry Analysis of Crude Oil and Natural Organic Matter and Their Preparation Recipes vol.32, pp.2, 2021, https://doi.org/10.1021/jasms.0c00456
- Application of Laser-Desorption Silver-Ionization Ultrahigh-Resolution Mass Spectrometry for Analysis of Petroleum Samples Subjected to Hydrotreating vol.35, pp.19, 2009, https://doi.org/10.1021/acs.energyfuels.1c01824
- Molecular-Level Structural Analysis of Hydrotreated and Untreated Atmospheric Residue Oils via Atmospheric Pressure Photoionization Cyclic Ion Mobility Mass Spectrometry and Ultrahigh-Resolution Mass vol.35, pp.22, 2009, https://doi.org/10.1021/acs.energyfuels.1c02369
- Determination of anthropogenic organics in dichlomethane extracts of aerosol particulate matter collected from four different locations in China and Republic of Korea by GC-MS and FTICR-MS vol.805, pp.None, 2009, https://doi.org/10.1016/j.scitotenv.2021.150230
- Improved coverage of plant metabolites using powder laser desorption/ionization coupled with Fourier-transform ion cyclotron mass spectrometry vol.373, pp.no.pb, 2009, https://doi.org/10.1016/j.foodchem.2021.131541