DOI QR코드

DOI QR Code

Photodissociation of Nitrous Oxide by Slice Ion Imaging: The Stagnation Pressure Dependence

  • Published : 2009.11.20

Abstract

Photodissociation of nitrous oxide near 203 nm has been studied by a combination of high resolution slice ion imaging technique and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy of $N_2(X^1{{\Sigma}_g}^+)$ via the (a″$^1{{\Sigma}_g}^+$) state. We have measured the recoil velocity and angular distributions of $N_2$ fragments by ion images of the state-resolved photofragments. The $N_2$ fragments were highly rotationally excited and the NN-O bond dissociation energy was determined to be 3.635 eV. Also, we investigated the photofragment images from the photodissociation of $N_2O$ clusters with various stagnation pressures.

Keywords

References

  1. Chandler, D. W.; Houston, P. L. J. Chem. Phys. 1987, 87, 1445 https://doi.org/10.1063/1.453276
  2. Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477 https://doi.org/10.1063/1.1148310
  3. Gebhardt, C. R.; Rakitzis,T. P.; Samartzis, P. C.; Ladopoulos, V.; Kitsopoulos, T. N. Rev. Sci. Instrum. 2001, 72, 3848 https://doi.org/10.1063/1.1403010
  4. Lin, J. J.; Zhou, J.; Shiu, W.; Liu, K. Rev. Sci. Instrum. 2003, 74, 2495 https://doi.org/10.1063/1.1561604
  5. Felder, P.; Haas, B. M.; Huber, J. R. Chem. Phys. Lett. 1991, 186, 177 https://doi.org/10.1016/S0009-2614(91)85125-G
  6. Hanisco, T. F.; Kummel, A. C. J. Phys. Chem. 1993, 97, 7242 https://doi.org/10.1021/j100130a020
  7. Suzuki, T.; Katayanagi, H.; Mo, Y.; Tonokura, K. Chem. Phys. Lett. 1996, 256, 90 https://doi.org/10.1016/0009-2614(96)00429-0
  8. Neyer, D. W.; Heck, A. J. R.; Chandler, D. W. J. Chem. Phys. 1999, 110, 3411 https://doi.org/10.1063/1.478207
  9. Brouard, M.; Clark, A. P.; Vallance, C.; Vasyutinskii, O. S. J. Chem. Phys. 2003, 119, 771 https://doi.org/10.1063/1.1579471
  10. Nishide, T.; Suzuki, T. J. Phys. Chem. A 2004, 108, 7863 https://doi.org/10.1021/jp048966a
  11. Smolin, A. G.; Vasyutinskii, O. S.; Wouters, E. R.; Suits, A. G. J. Chem. Phys. 2004, 121, 6759 https://doi.org/10.1063/1.1785786
  12. Kawamata, H.; Kohguchi, H.; Nishide, T.; Suzuki, T. J. Chem. Phys. 2006, 125, 133312 https://doi.org/10.1063/1.2264362
  13. Zhang, X.-p.; Lee, W.-B.; Zhao, D.-f.; Hsiao, M.-K.; Chen, Y.- L.; Lin, K.-C. J. Chem. Phys. 2009, 130, 214305 https://doi.org/10.1063/1.3148376
  14. Gough, T. E.; Miller, R. E.; Scoles, G. J. Chem. Phys. 1978, 69, 1588 https://doi.org/10.1063/1.436732
  15. Miller, R. E.; Watts, R. O.; Ding, A. Chem. Phys. 1984, 83, 155 https://doi.org/10.1016/0301-0104(84)85230-1
  16. Miller, R. E.; Watts, R. O. Chem. Phys. Lett. 1984, 105, 409 https://doi.org/10.1016/0009-2614(84)80051-2
  17. Ohshima, Y.; Matsumoto, Y.; Takami, M.; Kuchitsu, K. Chem. Phys. Lett. 1988, 152, 294 https://doi.org/10.1016/0009-2614(88)80095-2
  18. Huang, Z. S.; Miller, R. E. J. Chem. Phys. 1988, 89, 5408 https://doi.org/10.1063/1.455592
  19. Kudoh, S.; Onoda, K.; Takayanagi, M.; Nakata, M. J. Mol. Struct. 2000, 524, 61 https://doi.org/10.1016/S0022-2860(99)00316-6
  20. Li, W.; Chambreau, S. D.; Lahankar, S. A.; Suits, A. G. Rev. Sci. Instrum. 2005, 76, 063106 https://doi.org/10.1063/1.1921671
  21. Parker, D. H.; Eppink, A. T. J. B. J. Chem. Phys. 1997, 107, 2357 https://doi.org/10.1063/1.474624