DOI QR코드

DOI QR Code

Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100)

  • Chun, Mi-Sun (Department of Chemistry, Pukyong National University) ;
  • Moon, Myung-Jun (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Published : 2009.11.20

Abstract

We report here the surface behavior of zirconium oxide deposited on Si(100) substrate depending on the different substrate temperatures. The zirconium oxide thin films were successfully deposited on the Si(100) surfaces applying radio-frequency (RF) magnetron sputtering process. The obtained zirconium oxide films were characterized by X-ray photoelectron spectroscopy (XPS) for study about the chemical environment of the elements, X-ray diffraction (XRD) for check the crystallinity of the films, spectroscopic ellipsometry (SE) technique for measuring the thickness of the films, and the morphology of the films were investigated by atomic force microscope (AFM). We found that the oxidation states of zirconium were changed from zirconium suboxides ($ZrO_{x,y}$, x,y < 2) (x; higher and y; lower oxidation state of zirconium) to zirconia ($ZrO_2$), and the surface was smoothed as the substrate temperature increased.

Keywords

References

  1. Venkataraj, S.; Kappertz, O.; Weis, H.; Drese, R.; Jayavel, R.; Wuttig, M. J. Appl. Phys. 2002, 92, 3599 https://doi.org/10.1063/1.1503858
  2. Gao, P. T.; Meng, L. J.; Snatos, M. P.; Teixeria, V.; Andritschky, M. Vacuum 2000, 56, 143 https://doi.org/10.1016/S0042-207X(99)00199-2
  3. Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y. Appl. Surf. Sci. 2007, 53, 8718
  4. Larsson, A. L.; Niklasson, A. G. Sol. Energy Mater. Sol. Cells 2004, 84, 351 https://doi.org/10.1016/j.solmat.2004.02.051
  5. Baertsch, C. D.; Jensen, K. F.; Hertz, J. L.; Tuller, H. L.; Vengallatore, S. T.; Spearing, S. M.; Schmidt, M. A. J. Mater. Res. 2004, 19, 2604 https://doi.org/10.1557/JMR.2004.0350
  6. Lin, C.-Y.; Wu, C.-Y.; Wu, C.-Y.; Lin, C.-C.; Tseng, T.-Y. Thin Solid Films 2007, 516, 444 https://doi.org/10.1016/j.tsf.2007.07.140
  7. Minh, N. Q. J. Am. Ceram. Soc. 1993, 76, 563 https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  8. Feldman, A.; Yang, X.; Farabaugh, E. N. Appl. Opt. 1989, 28, 5229 https://doi.org/10.1364/AO.28.005229
  9. Kuo, D. H.; Chen, C. H. Thin Solid Film 2003, 429, 40 https://doi.org/10.1016/S0040-6090(03)00143-3
  10. He, G.; Fang, Q.; Liu, M.; Zhu, L. Q.; Zhang, L. D. J. Cryst. Growth 2004, 268, 155 https://doi.org/10.1016/j.jcrysgro.2004.05.038
  11. Howard, J. M.; Cracium, V.; Essary, V.; Singh, R. K. Appl. Phys. Lett. 2002, 81, 3431 https://doi.org/10.1063/1.1517407
  12. Zhu, L. Q.; He, G.; Liu, M.; Fang, Q.; Zhang, L. D. Mater. Lett. 2006, 60, 888 https://doi.org/10.1016/j.matlet.2005.10.039
  13. Wada, K.; Yamaguchi, N.; Matsubara, H. Surf. Coat. Technol. 2004, 184, 55 https://doi.org/10.1016/j.surfcoat.2003.08.084
  14. Jeong, J.; Yong, K. J. Cryst. Growth 2003, 254, 65 https://doi.org/10.1016/S0022-0248(03)01114-X
  15. Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Li, Z. G.; Pillione, L. J.; Messier, R. F. J. Vac. Sci. Technol. A 2003, 21, 745 https://doi.org/10.1116/1.1566789
  16. Pulker, H. K. Surf. Coat. Technol. 1999, 112, 250 https://doi.org/10.1016/S0257-8972(98)00764-6
  17. Wang, L. S.; Barnett, S. A. J. Electrochem. Soc. 1992, 139, 1134 https://doi.org/10.1149/1.2069353
  18. Huy, L. D.; Laffez, P.; Daniel, P.; Jouanneaux, A.; Khoi, N. T.; Simeone, D. Mater. Sci. Eng. B 2003, 104, 163 https://doi.org/10.1016/S0921-5107(03)00190-9
  19. JCPDS Database, International Center for Diffraction Data. 2003, PDF 83-0940
  20. Kwon, J. H.; Youn, S. W.; Kang, Y.-C. Bull. Korean Chem. Soc. 2006, 27, 1851 https://doi.org/10.5012/bkcs.2006.27.11.1851
  21. Jung, H. Y.; Kang, Y.-C. Bull. Korean Chem. Soc. 2007, 28, 1751 https://doi.org/10.5012/bkcs.2007.28.10.1751
  22. Espitia-Cabrera, I.; Orozco-Hernandez, H. D.; Bartolo-Perez, P.; Contreras-Garcia, M. E. Surf. Coat. Technol. 2008, 203, 211 https://doi.org/10.1016/j.surfcoat.2008.08.051
  23. Proceedings of the International Conference Zirconia '88: Advances in Zirconia Science and Technology; Meriani, S., Ed.; New York: Elesvier, 1989
  24. Venkataraj, S.; Kappertz, O.; Weis, H.; Drese, R.; Jayavel, R.; Wuttig, M. J. Appl. Phys. 2002, 92, 3599 https://doi.org/10.1063/1.1503858
  25. Zhu, L. Q.; Fang, Q.; Wang, X. J.; Zhang, J. P.; Liu, M.; He, G.; Zhang, L. D. Appl. Sur. Sci. 2008, 254, 5439 https://doi.org/10.1016/j.apsusc.2008.02.073
  26. Handbook of X-ray Photoelectron Spectroscopy; Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E., Eds.; Perkin-Elmer Corp.: Eden Prairie, MN, 1992; p 100
  27. Sun, Y.-M.; Lozano, J.; Ho, H.; Park, H. J.; Veldman, S.; White, J. M. Appl. Surf. Sci. 2000, 161, 115 https://doi.org/10.1016/S0169-4332(00)00141-0
  28. Cabillo, G.; Lillo, L.; Caro, C.; Buono-Core, G. E.; Chornik, B.; Soto, M. A. J. Non-Cryst. Solids 2008, 354, 3919 https://doi.org/10.1016/j.jnoncrysol.2008.05.029
  29. Zhang, N. L.; Song, Z. T.; Wan, Q.; Shen, Q. W.; Lin, C. L. Appl. Surf. Sci. 2002, 202, 126 https://doi.org/10.1016/S0169-4332(02)00965-0
  30. Ohtsu, Y.; Ehami, M.; Fujita, H.; Yukimura, K. Surf. Coat. Technol. 2005, 196, 81 https://doi.org/10.1016/j.surfcoat.2004.08.102
  31. Jeon, T. S.; White, J. M.; Kwong, D. L. Appl. Phys. Lett. 2001, 78, 368 https://doi.org/10.1063/1.1339994
  32. Qi, W.-J.; Nieh, R.; Lee, B. H.; Kang, L.; Jeon, Y.; Lee, J. C. Appl. Phys. Lett. 2000, 77, 3269 https://doi.org/10.1063/1.1326482
  33. He, G.; Fang, Q.; Zhang, J. X.; Zhu, L. Q.; Liu, M.; Zhang, L. D. Nanotechnology 2005, 16, 1647
  34. Zhu, L. Q.; Fang, Q.; He, G.; Liu, M.; Xu, X. X.; Zhang, L. D. Mater. Sci. Semicond. Pro. 2006, 9, 1025 https://doi.org/10.1016/j.mssp.2006.10.019
  35. Tolinski, T.; Kowalczyk, A.; Chelkowska, G.; Mihalik, M.; Tinko, M. Act. Phys. Polonica A 2008, 113, 1
  36. Miyazaki, S.; Narasaki, M.; Ogasawara, M.; Hirose, M. Microelectron. Eng. 2001, 59, 373 https://doi.org/10.1016/S0167-9317(01)00671-2
  37. Miyazaki, S.; Narasaki, M.; Ogasawara, M.; Hirose, M. Solid-State Electronics 2002, 46, 1679 https://doi.org/10.1016/S0038-1101(02)00161-2
  38. Crist, B. V. Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides; John wiley & Sons Ltd: Baffins Lane, Chichester, West Sussex PO19 1UD, England, 2000; p 515
  39. Chua, D. H. C.; Milne, W. I.; Zhao, Z. W.; Tay, B. K.; Lau, S. P.; Carney, T.; White, R. G. J. Non-Cryst. Solids 2008, 332, 185 https://doi.org/10.1016/j.jnoncrysol.2003.09.016

Cited by

  1. Microfibers Produced by Electrospinning Process vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1242
  2. Designing synthesis and photocatalytic activities of Gd/ZrO2 nanocomposite vol.16, pp.2, 2014, https://doi.org/10.1007/s11051-013-2241-x
  3. Investigation on spray deposited BaCe0.7Zr0.1Y0.1Gd0.1O2.9 thin film for proton conducting SOFC vol.26, pp.10, 2015, https://doi.org/10.1007/s10854-015-3360-1
  4. Effects of anodisation parameters on thin film properties: a review vol.33, pp.6, 2017, https://doi.org/10.1080/02670836.2016.1193654
  5. element vol.6, pp.36, 2018, https://doi.org/10.1039/C8TC03640C
  6. Structural Properties and State of a Zirconium Dioxide Surface Layer Modified with Mе3+ Cations vol.92, pp.9, 2018, https://doi.org/10.1134/S0036024418090145
  7. The Properties of RF Sputtered Zirconium Oxide Thin Films at Different Plasma Gas Ratio vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.397
  8. Synthesis and Characterization of Aluminum Oxide Submicro-Rings vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1776
  9. Ge-Based Nonvolatile Memory Formed on Si Substrate with Ge-Stabilized Tetragonal ZrO2 as Charge Trapping Layer vol.158, pp.4, 2009, https://doi.org/10.1149/1.3547717
  10. Photocatalytic degradation of textile-dyeing wastewater by using a microwave combustion-synthesized zirconium oxide supported activated carbon vol.27, pp.None, 2009, https://doi.org/10.1016/j.mssp.2014.06.050
  11. Effect of Reduction on the State of the Surface Layer and Catalytic Properties of $${{{\text{Pt}}} \mathord{\left/ {\vphantom {{{\text{Pt}}} {{{{\text{WO}}_{4}^{{2 - }}} \mathord{\left/ {\vphantom {{{ vol.59, pp.9, 2009, https://doi.org/10.1134/s0965544119090135
  12. Thermochemical characterization of Zr/Fe2O3 pyrotechnic mixture under natural aging conditions vol.126, pp.10, 2009, https://doi.org/10.1063/1.5096803