DOI QR코드

DOI QR Code

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang (Nano Bio Application Lab., Momed Co.) ;
  • Kim, Song-Mi (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Seol, Hee-Jin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • You, Jung-Min (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeong, Eun-Seon (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Seul-Ki (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Seol, Kyung-Sik (Nano Bio Application Lab., Momed Co.) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2009.12.20

Abstract

Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Keywords

References

  1. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 3rd Ed; Clarendon Press: Oxford, 1999
  2. Imlay, J. A.; Linn, S. J. Bacteriol. 1987, 169, 2967
  3. Hampton, M. B.; Orrenius, S. FEBS Lett. 1997, 414, 552 https://doi.org/10.1016/S0014-5793(97)01068-5
  4. Clement, M.V.; Ponton, A.; Pervaiz, S. FEBS Lett. 1998, 440, 13 https://doi.org/10.1016/S0014-5793(98)01410-0
  5. Gonzalez-Flecha, B.; Demple, B. J. Bacteriol. 1997, 179, 382
  6. Chance, B.; Sies, H.; Boveris, A. Physiol. Rev. 1979, 59, 527
  7. Bai, J.; Rodriguez, A. M.; Melendez, J. A.; Cederbaum, A. I. J. Biol. Chem. 1999, 274, 26217 https://doi.org/10.1074/jbc.274.37.26217
  8. Matsumoto, A.; Okado, A.; Fujii, T.; Fujii, J.; Egashira, M.; Niikawa, N.; Taniguchi, N. FEBS Lett. 1999, 443, 246 https://doi.org/10.1016/S0014-5793(98)01736-0
  9. Takagi, Y.; Mitsui, A.; Nishiyama, A.; Nozaki, K.; Sono, H.; Gon, Y.; Hashimoto, N.; Yodoi, J. Proc. Natl. Acad. Sci. USA 1999, 96, 4131 https://doi.org/10.1073/pnas.96.7.4131
  10. Rhee, S. G. Science 2006, 312, 1882 https://doi.org/10.1126/science.1130481
  11. Stone, J. R.; Yang, S. Antioxid. Redox Signal. 2006, 8, 243 https://doi.org/10.1089/ars.2006.8.243
  12. Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell 2007, 26, 1 https://doi.org/10.1016/j.molcel.2007.03.016
  13. D'Autréaux, B.; Toledano, M. B. Nat. Rev. Mol. Cell Biol. 2007, 8, 813 https://doi.org/10.1038/nrm2256
  14. Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Nat. Rev. Mol. Cell Biol. 2007, 8, 722 https://doi.org/10.1038/nrm2240
  15. Poole, L. B.; Nelson, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18 https://doi.org/10.1016/j.cbpa.2008.01.021
  16. Finkel, T.; Serrano, M.; Blasco, M. A. Nature 2007, 448, 767 https://doi.org/10.1038/nature05985
  17. Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discovery 2004, 3, 205 https://doi.org/10.1038/nrd1330
  18. Lin, M. T.; Beal, M. F. Nature 2006, 443, 787 https://doi.org/10.1038/nature05292
  19. Inamo, M.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1983, 22, 3734 https://doi.org/10.1021/ic00167a013
  20. Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Nano Lett. 2003, 3, 727 https://doi.org/10.1021/nl034139u
  21. Qu, F.; Yang, M.; Jiang, J.; Feng, K.; Shen, G.; Yu, R. Electrochem. Commun. 2007, 9, 2596 https://doi.org/10.1016/j.elecom.2007.08.006
  22. Boo, H.; Jeong, R.-A.; Park, S.; Kim, K. S.; An, K. H.; Lee, Y. H.; Han, J. H.; Kim, H. C.; Chung, T. D. Anal. Chem. 2006, 78, 617 https://doi.org/10.1021/ac0508595
  23. Valentini, F.; Amine, A.; Orlanducci, S.; Terranova, M. L.; Palleschi, G. Anal. Chem. 2003, 75, 5413 https://doi.org/10.1021/ac0300237
  24. Wang, H.-S.; Li, T.-H.; Jia, W.-L.; Xu, H.-Y. Biosens. Bioelectron. 2006, 22, 664 https://doi.org/10.1016/j.bios.2006.02.007
  25. Zhang, Y.; Cai, Y.; Su, S. Anal. Biochem. 2006, 350, 285 https://doi.org/10.1016/j.ab.2006.01.002
  26. Hu, C.; Chen, X.; Hu, S. J. Electroanal. Chem. 2006, 586, 77 https://doi.org/10.1016/j.jelechem.2005.09.008
  27. Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Electroanalysis 2002, 14, 225 https://doi.org/10.1002/1521-4109(200202)14:3<225::AID-ELAN225>3.0.CO;2-I
  28. Jeong, H.; Jeon, S. Sensors 2008, 8, 6924 https://doi.org/10.3390/s8116924
  29. Wu, K.; Fei, J.; Hu, S. Anal. Biochem. 2003, 318, 100 https://doi.org/10.1016/S0003-2697(03)00174-X
  30. Wang, Z.-H.; Liang, Q.-L.; Wang, Y.-M.; Luo, G.-A. J. Electroanal. Chem. 2003, 540, 129 https://doi.org/10.1016/S0022-0728(02)01300-1
  31. Seol, H.; Jeong, H.; Jeon, S. J. Solid State Electrochem. Online First
  32. Zhu, L.; Zhai, J.; Yang, R.; Tian, C.; Guo, L. Biosens. Bioelectron. 2007, 22, 2768 https://doi.org/10.1016/j.bios.2006.12.027
  33. Zhang, M.; Gorski, W. J. Am. Chem. Soc. 2005, 127, 2058 https://doi.org/10.1021/ja044764g
  34. Zeng, J.; Gao, X.; Wei, W.; Zhai, X.; Yin, J.; Wu, L.; Liu, X.; Liu, K.; Gong, S. Sens. Actuat. B: Chem. 2007, 120, 595 https://doi.org/10.1016/j.snb.2006.03.016
  35. Sha, Y.; Qian, L.; Ma, Y.; Bai, H.; Yang, X. Talanta 2006, 70, 556 https://doi.org/10.1016/j.talanta.2006.01.007
  36. Yu, X.; Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F.; Rusling, J. F. Electrochem. Commun. 2003, 5, 408 https://doi.org/10.1016/S1388-2481(03)00076-6
  37. Wang, J.; Musameh, M.; Lin, Y. J. Am. Chem. Soc. 2003, 125, 2408 https://doi.org/10.1021/ja028951v
  38. Joshi, P. P.; Merchant, S. A.; Wang, Y.; Schmidtke, D. W. Anal. Chem. 2005, 77, 3183 https://doi.org/10.1021/ac0484169
  39. Xu, Y.; Pehrsson, P. E.; Chen, L.; Zhang, R.; Zhao W. J. Phys. Chem. C 2007, 111, 8638 https://doi.org/10.1021/jp0709611
  40. Wang, Y.; Wei, W.; Zeng, J.; Liu, X.; Zeng, X. Microchim. Acta 2008, 160, 253 https://doi.org/10.1007/s00604-007-0844-6
  41. Takamura, K.; Matsumoto, T. Anal. Bioanal. Chem. 2008, 391, 951 https://doi.org/10.1007/s00216-008-1942-y
  42. Kim, Y. D.; Jeon, S. Anal. Sci. 2001, 17, a97
  43. Martin, C. R. Science 1994, 266, 1961 https://doi.org/10.1126/science.266.5193.1961
  44. Martin, C. R. Chem. Mater. 1996, 8, 1739 https://doi.org/10.1021/cm960166s
  45. Parthasarathy, R. V.; Martin, C. R. Chem. Mater. 1994, 6, 1627 https://doi.org/10.1021/cm00046a011
  46. Pu, M.; Zhu, Y.; Tan, R.; Shi, G. Adv. Mater. 2001, 13, 1874 https://doi.org/10.1002/1521-4095(200112)13:24<1874::AID-ADMA1874>3.0.CO;2-M
  47. Zhi, L. J.; Gorelik, T.; Wu, J. S.; Kolb, U.; Mullen, K. J. Am. Chem. Soc. 2005, 127, 12792 https://doi.org/10.1021/ja054263a
  48. Piao, Y. Z.; Lim, H. C.; Chang, J. Y.; Lee, W. Y.; Kim, H. S. Electrochim. Acta 2005, 50, 2997 https://doi.org/10.1016/j.electacta.2004.12.043
  49. Jin, K. W.; Yao, B. D.; Wang, N. Chem. Phys. Lett. 2005, 409, 172 https://doi.org/10.1016/j.cplett.2005.05.002
  50. Hou, S. F.; Harrell, C. C.; Trofin, L.; Kohli, P.; Martin, C. R. J. Am. Chem. Soc. 2004, 126, 5674 https://doi.org/10.1021/ja049537t
  51. Chu, S. Z.; Inoue, S.; Wada, K.; Kurashima, K. J. Phys. Chem. B 2004, 108, 5582 https://doi.org/10.1021/jp0378642
  52. Yuan, J. H.; Wang, K.; Xia, X. H. Adv. Funct. Mater. 2005, 15, 803 https://doi.org/10.1002/adfm.200400321
  53. Chen, W.; Xia, X. H. Chem. Phys. Chem. 2007, 8, 1009 https://doi.org/10.1002/cphc.200600711
  54. Chen, W.; Xia, X. H. Adv. Funct. Mater. 2007, 17, 2943 https://doi.org/10.1002/adfm.200700015
  55. Broncová, G.; Shishkanova, T. V.; Matějka, P.; Volf, R.; Král, V. Anal. Chim. Acta 2004, 511, 197 https://doi.org/10.1016/j.aca.2004.01.052
  56. Chen, C. X.; Gao, Y. H. Electrochim. Acta 2007, 52, 3143 https://doi.org/10.1016/j.electacta.2006.09.056
  57. Xian, Y. Z.; Wang, H. T.; Zhou, Y. Y.; Pan, D. M.; Liu, F.; Jin, L. T. Electrochem. Commun. 2004, 6, 1270 https://doi.org/10.1016/j.elecom.2004.10.003
  58. Yang, C. M.; Yi, J. L.; Tang, X. J.; Zhou, G. Z.; Zeng, Y. React. Funct. Polym. 2006, 66, 1336 https://doi.org/10.1016/j.reactfunctpolym.2006.03.015
  59. Liang, H. P.; Guo, Y. G.; Hu, J. S.; Zhu, C. F.; Wan, L. J.; Bai, C. L. Inorg. Chem. 2005, 44, 3013 https://doi.org/10.1021/ic0500917
  60. Jeong, H.; Kim, H.; Jeon, S. Microchem. J. 2004, 78, 181 https://doi.org/10.1016/j.microc.2004.04.005

Cited by

  1. Trace Oxygen Sensitive Material Based on Two Porphyrin Derivatives in a Heterodimeric Complex vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101787
  2. Mild and Selective Activation and Substitution of Strong Aliphatic CF Bonds vol.21, pp.9, 2015, https://doi.org/10.1002/chem.201406097
  3. Hydration and Water Molecules Mobility in Acid Form of Nafion Membrane Studied by 1H NMR Techniques pp.1613-7507, 2019, https://doi.org/10.1007/s00723-019-1111-9
  4. A novel rapid synthesis of Fe2O3/graphene nanocomposite using ferrate(VI) and its application as a new kind of nanocomposite modified electrode as electrochemical sensor vol.70, pp.None, 2015, https://doi.org/10.1016/j.materresbull.2015.06.010
  5. Alteration of electronic effect causes change in rate determining step: Oxovanadium(IV)-salen catalyzed sulfoxidation of phenylmercaptoacetic acids by hydrogen peroxide vol.175, pp.None, 2009, https://doi.org/10.1016/j.poly.2019.114172
  6. Pre‐Polymerization Enables Controllable Synthesis of Nanosheet‐Based Porphyrin Polymers towards High‐Performance Li‐Ion Batteries vol.26, pp.46, 2009, https://doi.org/10.1002/chem.202001943