DOI QR코드

DOI QR Code

Discovery and Characterization of a Thermostable NADH Oxidase from Pyrococcus horikoshii OT3

  • Koh, Jong-Uk (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Chung, Hyun-Jung (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Chang, Woo-Young (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Tanokura, Masaru (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Sciences, Chung-Ang University)
  • Published : 2009.12.20

Abstract

A gene (PH0311) encoding a hypothetical protein from the genome sequence data of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 was cloned and over-expressed in Escherichia coli. The purified recombinant protein was found to possess FAD-dependent NADH oxidase activity, although it lacked sequence homology to any other known general NADH oxidase family. The product of the PH0311 gene was thus designated PhNOX (NADH oxidase from Pyrococcus horikoshii), with an estimated molecular weight of 84 kDa by gel filtration and 22 kDa by SDS-PAGE, indicating it to be a homotetramer of 22 kDa subunits. PhNOX catalyzed the oxidation of reduced ${\beta}$-NADH with subsequent formation of $H_2O_2$ in the presence of FAD as a cofactor, but not ${\alpha}$-NADH, ${\alpha}$-NADPH, or ${\beta}$-NADPH. PhNOX showed high affinity for ${\beta}$-NADH with a Km value of 3.70 ${\mu}$M and exhibited optimum activity at pH 8.0 and 95$^{\circ}C$ as it is highly stable against high temperature.

Keywords

References

  1. Nishiyama, Y.; Massey, V.; Takeda, K.; Kawasaki, S.; Sato, J.; Watanabe, T.; Niimura, Y. J. Bacteriol. 2001, 182, 5046 https://doi.org/10.1128/JB.182.18.5046-5051.2000
  2. Liu, X. L.; Scopes, R. K. Biochim. Biophys. Acta 1993, 1174, 187 https://doi.org/10.1016/0167-4781(93)90113-R
  3. Higuchi, M.; Shimada, M.; Matsumoto, J.; Yamamota, Y.; Rhaman, A.; Kamio, Y. Biosci. Biotechnol. Biochem. 1994, 58, 1603 https://doi.org/10.1271/bbb.58.1603
  4. Hoskins, D. D.; Whiteley, H. R.; Mackler, B. J. Biol. Chem. 1962, 237, 2647
  5. Schmidt, H. L.; Stocklein, W.; Danzer, J.; Kirch, P.; Limbach, B. Eur. J. Biochem. 1986, 156, 149 https://doi.org/10.1111/j.1432-1033.1986.tb09560.x
  6. Ahmed, S. A.; Claiborne, A. J. Biol. Chem. 1989, 264, 19856
  7. Ahmed, S. A.; Claiborne, A. J. Biol. Chem. 1989, 264, 19864
  8. Saeki, Y.; Nozaki, M.; Matsumoto, K. J. Biochem. 1985, 98, 1433
  9. Maeda, K.; Truscott, K.; Liu X. L.; Scopes, R. K. Biochem. J. 1992, 284, 551
  10. Miyoshi, A.; Rocha, T.; Gratadoux, J. J.; Le Loir, Y.; Oliveira, S. C.; Langella, P.; Azevedo, V. Genet. Mol. Res. 2003, 2, 348
  11. Ward, D. E.; Donnelly, C. J.; Mullendore, M. E.; van der Oost, J.; de Vos, W. M.; Cranel, E. J. III Eur. J. Biochem. 2001, 268, 5816 https://doi.org/10.1046/j.0014-2956.2001.02526.x
  12. Cocco, D.; Rinaldi, A.; Savini, I.; Coope, J. M.; Bannister, J. V. Eur. J. Biochem. 1988, 174, 267 https://doi.org/10.1111/j.1432-1033.1988.tb14093.x
  13. Yang, X.; Ma, K. J. Bacteriol. 2007, 189, 3312 https://doi.org/10.1128/JB.01525-06
  14. Kengen, S. W.; van der Oost, J.; de Vos, W. M. Eur. J. Biochem. 2003, 268, 5816 https://doi.org/10.1046/j.0014-2956.2001.02526.x
  15. Stetter, K. O. In Thermophiles: General; Molecular and Applied Microbiology; Wiley: New York, U. S. A., 1986; p. 39
  16. Gonzazzzlez, J. M.; Masuchi, Y.; Robb, F. T.; Ammerman, J. W.; Maeder, D. L.; Yanagibayashi, M.; Tamaoka, J.; Kato, C. Extremophiles 1998, 2, 123 https://doi.org/10.1007/s007920050051
  17. Kawarabayas, Y.; Sawada, M.; Horikawa, H.; Haikawa, Y.; Hino, Y.; Yamamoto, S.; Sekine, M.; Baba, S.; Kosugi, H.; Hosoyama, A.; Nagai, Y.; Sakai, M.; Ogura, K.; Otsuka, R.; Nakazawa, H.; Takamiya, M.; Ohfuku, Y.; Funahashi, T.; Tanaka, T.; Kudoh, Y.; Yamazaki, J.; Kushida, N.; Oguchi, A.; Aoki, K.; Yoshizawa, T.; Nakamura, Y.; Robb, T. F.; Horikoshi, K.; Masuchi, Y.; Shizuya, H.; Kikuchi, H. DNA Res. 1998, 5, 55 https://doi.org/10.1093/dnares/5.2.55
  18. Koh, J. U.; Lee, K. H.; Park, A. J.; Kong, K. H. Bull. Korean Chem. Soc. 2008, 29, 1633 https://doi.org/10.5012/bkcs.2008.29.8.1633
  19. Laemmli, U. K. Nature 1970, 227, 680 https://doi.org/10.1038/227680a0
  20. Bradford, M. M. Anal. Biochem. 1976, 72, 248 https://doi.org/10.1016/0003-2697(76)90527-3
  21. Chapman, S. K.; Reid, G. A. Flavoprotein Protocols: Human Press; Totowa, NJ, 1999
  22. Kong, K. H.; Hong, M. P.; Choi, S. S.; Kim, Y. T.; Cho, S. H. Biotechnol. Appl. Biochem. 2000, 31, 113 https://doi.org/10.1042/BA19990096
  23. Hecht, H. J.; Erdmann, H.; Park, H. J.; Sprinzl, M.; Schmid, R. D. Nat. Struct. Biol. 1995, 2, 1109 https://doi.org/10.1038/nsb1295-1109
  24. Franklund, C. V.; Baron, S. F.; Hylemon, P. B. J. Bacteriol. 1993, 175, 3002
  25. Jia, B.; Park, S.-C.; Lee, S.; Pham, B. P.; Yu, R.; Le, T.; Han, S. W.; Yang, J.-K.; Choi, M.-S.; Baumeister, W.; Cheong, G.-W. FEBS J. 2008, 275, 5355 https://doi.org/10.1111/j.1742-4658.2008.06665.x
  26. Yang, X.; Ma, K. Arch. Microbiol. 2005, 183, 331 https://doi.org/10.1007/s00203-005-0777-6
  27. Kawasaki, S.; Ishikura, J.; Chiba, D.; Nishino, T.; Niimura, Y. Arch. Microbiol. 2004, 181, 324 https://doi.org/10.1007/s00203-004-0659-3
  28. Herles, C.; Braune A.; Blaut M. Arch. Microbiol. 2002, 178, 71 https://doi.org/10.1007/s00203-002-0428-0
  29. Park, H. J.; Reiser, C. O.; Kondruweit, S.; Erdman, H.; Schmid, R. D.; Sprinzl, M. Eur. J. Biochem. 1992, 205, 881 https://doi.org/10.1111/j.1432-1033.1992.tb16853.x
  30. Lopez de Felipe, F.; Hugenholtz, J. Int. Dairy J. 2001, 11, 37 https://doi.org/10.1016/S0958-6946(01)00031-0

Cited by

  1. Studies of Solvolyses of 1,4-Benzodioxan-6-Sulfonyl Chloride by Extended Grunwald-Winstein Equation vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10573
  2. Kinetic Study on Solvolysis of 2-Methylfuran-3-carbonyl Chloride in Binary Solvent Mixtures vol.38, pp.3, 2017, https://doi.org/10.1002/bkcs.11084