DOI QR코드

DOI QR Code

Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

  • Kim, Mi-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Min, Se-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Seo, Jin-A (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2009.12.20

Abstract

Second-order rate constants (k$_{Nu–}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-i) with butane-2,3-dione monoximate ($Ox^-\;an\;\alpha$-nucleophile) and Z-substituted phenoxides in 80 mol% H$_2$O/20 mol% DMSO at 25.0${\pm}$0.1$^{\circ}C$. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for reactions of 1a-h with Ox$^–$ exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with ${\rho}_Y$ = 2.20 and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox$^–$. Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox$^–$ is over 10$^2$ times more reactive than its reference nucleophile, 4-chlorophenoxide (4-ClPhO$^–$). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the ${\alpha}$-effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-ClPhO$^–$. However, destabilization of the ground-state (GS) of Ox$^–$ has been concluded to be mainly responsible for the ${\alpha}$-effect found in this study on the basis of the fact that the magnitude of the ${\alpha}$-effect is independent of the nature of the substituent Y.

Keywords

References

  1. Edwards, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16-24 https://doi.org/10.1021/ja00860a005
  2. Recent Reviews: (a) Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825.(Please refer to the other references for details:no.29) https://doi.org/10.1016/j.tet.2004.05.006
  3. (a) Kirby, A. J.; Tondo, D. W.; Medeiros, M.; Souza, B. S.; Priebe, J. P.; Lima, M. F.; Nome, F. J. Am. Chem. Soc. 2009, 131, 2023- 2028.(Please refer to the other references for details:no.30-no.31) https://doi.org/10.1021/ja0502876
  4. (a) Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352-4363.(Please refer to the other references for details:no.32-no.34) https://doi.org/10.1039/b609658c
  5. (a) Fountain, K. R. J. Phys. Org. Chem. 2005, 18, 481-485.(Please refer to the other references for details:no.35-no.36) https://doi.org/10.1002/poc.897
  6. (a) Jencks, W. P. Catalysis in Chemistry and Enzymology; Mc-Graw-Hill: New York, 1969; pp. 107-111.(Please refer to the other references for details:no.37-no.39)
  7. (a) Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703-1711.(Please refer to the other references for details:no.40-no.41) https://doi.org/10.1021/ja00111a006
  8. (a) Curci, R.; Di Furia, F. Int. J. Chem. Kinet. 1975, 7, 341-349.(Please refer to the other references for details:no.42) https://doi.org/10.1002/kin.550070304
  9. Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121-8125 https://doi.org/10.1021/jo061275l
  10. McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem. 2008, 6, 2316-2326 https://doi.org/10.1039/b803734e
  11. (a) Ren, Y.; Yamataka, H. J. Comput. Chem. 2009, 30, 358-365.(Please refer to the other references for details:no.43-no.45) https://doi.org/10.1002/jcc.21061
  12. Depuy, C. H.; Della, E. W.; Filley, J.; Grabowski, J. J.; Bierbaum, V. M. J. Am. Chem. Soc. 1983, 105, 2481-2482 https://doi.org/10.1021/ja00346a066
  13. Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc. 2009, 131, 8227-8233 https://doi.org/10.1021/ja9012084
  14. (a) Buncel, E.; Um, I. H. Chem. Commun. 1986, 595-596.(Please refer to the other references for details:no.46) https://doi.org/10.1039/C39860000595
  15. Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920 https://doi.org/10.1021/jo051823f
  16. Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J. Chem. 2006, 84, 1550-1556 https://doi.org/10.1139/V06-156
  17. (a) Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.(Please refer to the other references for details:no.47) https://doi.org/10.1039/b007000i
  18. (a) Um, I. H.; Park, Y. M.; Buncel, E. Chem. Commun. 2000, 1917- 1918.(Please refer to the other references for details:no.48) https://doi.org/10.1039/b005610n
  19. (a) Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011- 1017.(Please refer to the other references for details:no.49) https://doi.org/10.1002/chem.200801534
  20. Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2403-2407 https://doi.org/10.5012/bkcs.2009.30.10.2403
  21. (a) Um, I. H.; Min, H. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663.(Please refer to the other references for details:no.50) https://doi.org/10.1021/jo000482x
  22. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677 https://doi.org/10.1021/jo801539w
  23. (a) Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073- 3078.(Please refer to the other references for details:no.51-no.53) https://doi.org/10.1021/jo900219t
  24. (a) Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.(Please refer to the other references for details:no.54-no.55) https://doi.org/10.1016/S0065-3160(08)60009-X
  25. (a) Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spec. 2007, 263, 205-214.(Please refer to the other references for details:no.56-no.59) https://doi.org/10.1016/j.ijms.2007.02.037
  26. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737 https://doi.org/10.1139/cjc-76-6-729
  27. (a) Seo, J. A.; Lee, H. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1915-1919.(Please refer to the other references for details:no.60-no.61) https://doi.org/10.5012/bkcs.2008.29.10.1915
  28. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69-132 https://doi.org/10.1016/S0065-3160(08)60108-2
  29. (b) Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009; Chapter 17
  30. (b) Kirby, A. J.; Lima, M. F.; da Silva, D.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2006, 128, 16944-16952. https://doi.org/10.1021/ja066439u
  31. (c) Kirby, A. J.; Dutta-Roy, N.; da Silva, D.; Goodman, J. M.; Lima, M. F.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2005, 127, 7033-7040. https://doi.org/10.1021/ja0502876
  32. (b) Terrier, F.; Le Guevel, E.; Chatrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600-601. https://doi.org/10.1039/b212160n
  33. (c) Buncel, E.; Cannes, C.; Chatrousse, A. P.; Terrier, F. J. Am. Chem. Soc. 2002, 124, 8766-8767. https://doi.org/10.1021/ja020379k
  34. (d) Moutiers, G.; Le Guevel, E.; Cannes, C.; Terrier, F.; Buncel, E. Eur. J. Org. Chem. 2001, 17, 3279-3284. https://doi.org/10.1002/1099-0690(200109)2001:17<3279::AID-EJOC3279>3.0.CO;2-9
  35. (b) Fountain, K. R.; Felkerson, C. J.; Driskell, J. D.; Lamp, B. D. J. Org. Chem. 2003, 68, 1810-1814. https://doi.org/10.1021/jo0206263
  36. (c) Fountain, K. R.; Tad-y, D. B.; Paul, T. W.; Golynskiy, M. V. J. Org. Chem. 1999, 64, 6547-6553 https://doi.org/10.1021/jo981902+
  37. (b) Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1990, 112, 1951-1956. https://doi.org/10.1021/ja00161a047
  38. (c) Jencks, W. P. Chem. Rev. 1985, 85, 511-526. https://doi.org/10.1021/cr00070a001
  39. (d) Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637. https://doi.org/10.1021/ja01012a030
  40. (b) Bernasconi, C. F. Adv. Phys. Org. Chem. 1992, 27, 119-238. https://doi.org/10.1016/S0065-3160(08)60065-9
  41. (c) Bernasconi, C. F.; Stronach, M. W. J. Org. Chem. 1991, 56, 1993-2001. https://doi.org/10.1021/jo00006a008
  42. (b) Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 4400-4405. https://doi.org/10.1021/ja00993a026
  43. (b) Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660-5667. https://doi.org/10.1021/jo070650m
  44. (c) Ren, Y.; Yamataka, H. Chem. Eur. J. 2007, 13, 677-682. https://doi.org/10.1002/chem.200600203
  45. (d) Ren, Y.; Yamataka, H. Org. Lett. 2006, 8, 119-121. https://doi.org/10.1021/ol0526930
  46. (b) Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577-582. https://doi.org/10.1021/jo9915776
  47. (b) Tarkka, R. M.; Buncel, E. J. Am. Chem. Soc. 1995, 117, 1503-1507. https://doi.org/10.1021/ja00110a006
  48. (b) Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864. https://doi.org/10.1021/jo0156114
  49. (b) Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112. https://doi.org/10.1021/ja016917v
  50. (b) Um, I. H.; Kim, K. H.; Park. H. R.; Fujio, M.; Tsuno Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  51. (b) Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  52. (c) Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  53. (d) Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  54. (b) Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  55. (c) Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  56. (b) Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn, 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  57. (c) Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616- 623. https://doi.org/10.1002/poc.1104
  58. d) Fujio, M.;Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  59. (e) Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091
  60. (b) Seo, J. A.; Chun, S. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1459-1463. https://doi.org/10.5012/bkcs.2008.29.8.1459
  61. (c) Um, I. H.; Akhtar, K. Bull. Korean Chem. Soc. 2008, 29, 772-776. https://doi.org/10.5012/bkcs.2008.29.4.772

Cited by

  1. Experimental Validation of the α-Effect in the Gas Phase vol.133, pp.35, 2011, https://doi.org/10.1021/ja205741m
  2. 2@C reactions vol.34, pp.23, 2013, https://doi.org/10.1002/jcc.23356
  3. 2 reaction vol.36, pp.11, 2015, https://doi.org/10.1002/jcc.23862
  4. Enhanced Reactivity of RC?CZ (R = H and Cl; Z = O, S, and Se) and the Influence of Leaving Group on the α-Effect in the E2 Reactions vol.75, pp.12, 2010, https://doi.org/10.1021/jo1006575
  5. Mechanistic study of carboxylic acid and phosphate ester cleavage by oximate metal complexes surpassing the limiting reactivity of highly basic free oximate anions vol.49, pp.8, 2009, https://doi.org/10.1039/c9dt04733f