DOI QR코드

DOI QR Code

Synthesis of a Novel Phosphorus-containing Flame Retardant for Epoxy Resins

  • Xu, Hong-Jun (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Published : 2009.11.20

Abstract

In this study, a novel phosphorus-containing flame retardant copolymer of spirocyclic pentaerythritol di(phosphate monochloride) and bisphenol S (SPD-BS) was successfully synthesized and used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) epoxy resins. The chemical structure of the SPD-BS was characterized using FT-IR and $^1H$ NMR spectra. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The effects of SPD-BS and nano-$CaCO_3$ on the flame-retardant properties of DGEBA/SPD-BS systems were evaluated by measurement of the burning rate. As a result, the thermal stabilities of the DGEBA/SPD-BS systems were decreased with increasing SPD-BS content. The flame-retardant properties and char yields of the systems were significantly increased when SPD-BS content increased. The synergism of nano-$CaCO_3$ incorporation on flame retardancy was found for the DGEBA/SPD-BS systems.

Keywords

References

  1. Bauer, R. S. Epoxy Resin Chemistry, Advanced in Chemistry Series, No. 114; American Chemical Society: Washington DC, 1979; p 1
  2. Gowda, S. K. N.; Mahendra, K. N. Bull. Korean Chem. Soc. 2006, 27, 1542 https://doi.org/10.5012/bkcs.2006.27.10.1542
  3. Gao, L. P.; Wang, D. Y.; Wang, Y. Z.; Wang, J. S.; Yang, B. Polym. Degrad. Stab. 2008, 93, 1308 https://doi.org/10.1016/j.polymdegradstab.2008.04.004
  4. Wang, H.; Wang, Q.; Huang, Z.; Shi, W. Polym. Degrad. Stab. 2007, 92, 1788 https://doi.org/10.1016/j.polymdegradstab.2007.07.008
  5. Jeng, R. J.; Lo, G. S.; Chen, C. P.; Liu, Y. L.; Hsiue, G. H.; Su, W. C. Polym. Adv. Technol. 2003, 14, 147 https://doi.org/10.1002/pat.343
  6. Shieh, J. Y.; Wang, C. S. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 369 https://doi.org/10.1002/pola.10121
  7. Perez, R. M.; Sandler, J. K. W.; Altst$\ddot{o}$dt, V.; Hoffmann, T.; Pospiech, D.; Ciesielski, M.; Döring, M.; Braun, U.; Balabanovich, A. I.; Schartel, B. Polymer 2007, 48, 778
  8. Toldy, A.; T$\'{e}$th, N.; Anna, P.; Marosi, G. Polym. Degrad. Stab. 2006, 91, 585 https://doi.org/10.1016/j.polymdegradstab.2005.02.025
  9. Liu, R.; Wang, X. Polym. Degrad. Stab. 2009, 94, 617 https://doi.org/10.1016/j.polymdegradstab.2009.01.008
  10. Liaw, D. J.; Shen, W. C. Angew. Makromol. Chem. 1992, 199, 171 https://doi.org/10.1002/apmc.1992.051990114
  11. Parekh, J. K.; Patel, R. G. Angew. Makromol. Chem. 1995, 227, 1 https://doi.org/10.1002/apmc.1995.052270101
  12. Jeng, R. J.; Shau, S. M.; Lin, J. J.; Su, W. C.; Chiu, Y. S. Eur. Polym. J. 2002, 38, 683 https://doi.org/10.1016/S0014-3057(01)00246-4
  13. Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2009, 30, 334 https://doi.org/10.5012/bkcs.2009.30.2.334
  14. Jin, F. L.; Park, S. J. Polym. Int. 2008, 57, 577 https://doi.org/10.1002/pi.2280
  15. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2008, 478, 406 https://doi.org/10.1016/j.msea.2007.05.102
  16. Wang, X.; Zhang, Q. Eur. Polym. J. 2004, 40, 385 https://doi.org/10.1016/j.eurpolymj.2003.09.023
  17. Hussain, M.; Varley, R. J.; Mathys, Z.; Cheng, Y. B.; Simon, G. P. J. Appl. Polym. Sci. 2004, 91, 1233 https://doi.org/10.1002/app.13267
  18. Ciesielski, M.; Schäfer, A.; D$\ddot{o}$ring, M. Polym. Adv. Technol. 2008, 19, 507 https://doi.org/10.1002/pat.1090
  19. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2008, 475, 190 https://doi.org/10.1016/j.msea.2007.04.046
  20. Chen, C. H.; Teng, C. C.; Su, S. F.; Wu, W. C.; Yang, C. H. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 451 https://doi.org/10.1002/polb.20721

Cited by

  1. filled recycled polyethylene terephthalate/recycled polypropylene blend vol.127, pp.2, 2012, https://doi.org/10.1002/app.37673
  2. Synthesis of a phosphorus/silicon hybrid and its synergistic effect with melamine polyphosphates on flame retardant polypropylene system vol.129, pp.1, 2012, https://doi.org/10.1002/app.38740
  3. Synthesis of poly(glycolide-caprolactone) copolymers for application as bioabsorbable suture materials vol.21, pp.6, 2013, https://doi.org/10.1007/s13233-013-1071-0
  4. Effect of urethane functionality and number of epoxide groups on cure and mechanical behaviors of epoxy resins vol.23, pp.2, 2015, https://doi.org/10.1007/s13233-015-3015-3
  5. Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles vol.33, pp.8, 2009, https://doi.org/10.5012/bkcs.2012.33.8.2513
  6. Polymer matrices for carbon fiber-reinforced polymer composites vol.14, pp.2, 2009, https://doi.org/10.5714/cl.2013.14.2.076
  7. Progress on Epoxy/Polyamide and Inorganic Nanofiller-Based Hybrids: Introduction, Application, and Future Potential vol.55, pp.17, 2009, https://doi.org/10.1080/03602559.2016.1185628
  8. Recent Trends of Foaming in Polymer Processing: A Review vol.11, pp.6, 2009, https://doi.org/10.3390/polym11060953
  9. Synthesis and application of a polymeric intumescent flame retardant for cotton fabric vol.42, pp.5, 2009, https://doi.org/10.1007/s12034-019-1909-y
  10. Effect of Surface Modification on Thermal Stability, Flexural Properties, and Impact Strength of Epoxy/Graphene Nanocomposites vol.40, pp.10, 2019, https://doi.org/10.1002/bkcs.11858
  11. Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin vol.12, pp.1, 2020, https://doi.org/10.3390/polym12010132