DOI QR코드

DOI QR Code

Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study

  • Moon, Chang-Hun (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Hak-Jun (Korea Polar Research Institute) ;
  • Heo, Yong-Seok (Department of Chemistry, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2009.11.20

Abstract

Cold shock proteins (Csps) are a subgroup of the cold-induced proteins on reduction of the growth temperature below the physiological temperature. They preferentially bind to single-stranded nucleic acids to translational regulation via RNA chaperoning. Csp plays important role in cold adaptations for the psychrophilic microorganism. Recently, Cold shock protein from psychrophilic bacteria, Colwellia psychrerythraea (CpCsp) has been identified. Three dimensional structures of a number of Csps from various microorganisms have been solved by NMR spectroscopy or X-ray crystallography, but structures of psychrophilic Csps were not studied yet. Therefore, cloning and purification protocols for further structural study of psychrophilic Csp have been optimized in this study. CpCsp was expressed in E. coli with pET-11a vector system and purified by ion exchange, size exclusion, and reverse phase chromatography. Expression and purification of CpCsp in M9 minimal media was carried out and $^{15}N$-labeled proteins with high purity over 90% was obtained. Further study will be carried out to investigate the tertiary structure and dynamics of CpCsp.

Keywords

References

  1. Nuray, N.; Ferhan, E. Turk. J. Med. Sci. 2001, 31, 283
  2. Wenqing, F.; Roberto, T.; Diane, E. Z.; Masayori, I.; Gaetano, T. M. Biochemistry 1998, 37, 10881 https://doi.org/10.1021/bi980269j
  3. Heather, A. T.; Pamela, G. J.; Masayori, I. BioEssay 20.1 1998, 20, 49 https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N
  4. Thomas, S.; Peter, L. G.; Dieter, P.; Saufung, M.; Franz, X. S.; Mohamed, A. M. J. Biol. Chem. 1999, 274, 3407 https://doi.org/10.1074/jbc.274.6.3407
  5. Perl, D.; Welker, C.; Schindler, T.; Schroder, K.; Marahiel, M. A.; Jaenicke, R.; Schmid, F. X. Nat. Struct. Biol. 1998, 5, 229 https://doi.org/10.1038/nsb0398-229
  6. Lim, J.; Thomas, T.; Cavicchioli, R. J. Mol. Biol. 2000, 297, 553 https://doi.org/10.1006/jmbi.2000.3585
  7. Phadtare, S.; Inouye, M.; Severinov, K. J. Biol. Chem. 2002, 277, 7239 https://doi.org/10.1074/jbc.M111496200
  8. Phadtare, S.; Severinov, K. J. Bacteriol. 2005, 187, 6584 https://doi.org/10.1128/JB.187.18.6584-6589.2005
  9. Horn, G.; Hofweber, R.; Kremer, W.; Kalbizer, H. R. Cell Mol. Life Sci. 2007, 64, 1457 https://doi.org/10.1007/s00018-007-6388-4
  10. Katherin, L. R.; Hector, M. R.; Brian, J. H.; Lydia, M. G. Protein Sci. 1998, 7, 470 https://doi.org/10.1002/pro.5560070228
  11. Max, K. E.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. FEBS J. 2007, 274, 1265 https://doi.org/10.1111/j.1742-4658.2007.05672.x
  12. Schnuchel, A.; Wiltscheck, R.; Ceisch, M.; Herrler, M.; Willimsky, G.; Graumann, P.; Marahiel, M. A.; Holak, T. A. Nature 1993, 364, 169 https://doi.org/10.1038/364169a0
  13. Schindelin, H.; Marahiel, M. A.; Heinemann, U. Nature 1993, 364, 164 https://doi.org/10.1038/364164a0
  14. Newkirk, K.; Feng, W.; Jiang, W.; Tejero, R.; Emerson, S. D.; Inouye, M.; Montelione, G. T. Proc. Natl. Acad. Sci. USA 1994, 91, 5114 https://doi.org/10.1073/pnas.91.11.5114
  15. Schindelin, H.; Jiang, W.; Inouye, M.; Heinemann, U. Proc. Natl. Acad. Sci. USA 1994, 91, 5119 https://doi.org/10.1073/pnas.91.11.5119
  16. Melody, S. C.; Andrew, C.; Charles, S. C.; Peter, C.; H, W. D.; Keiron, P. P. F.; Ian, A. J.; Barbara, A. M.; Alison, E. M.; Lloyd, S. P.; Karin, R.; Alex, D. R. Comp. Funct. Genom. 2004, 5, 230 https://doi.org/10.1002/cfg.398
  17. Jeong, K.-W.; Lee, J.-Y.; Kang, D. I.; Lee, J.-U.; Hwang, Y.-S.; Kim, Y. Bull. Korean Chem. Soc. 2008, 29, 7.
  18. Woonghee, K.; Sun-Hee, B.; Dong-Il, K.; Hang-Cheol, S.; Yangmee, K. Bull. Korean Chem. Soc. 2008, 29, 11
  19. Delaglio, F.; Grzesiak, S.; Vuister, G.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277
  20. Goddard, T. D.; Kneller, D. G. SPARKY3, University of California, San Francisco, 2003
  21. Schindelin, H.; Herrler, M.; Willimsky, G.; Marahiel, M. A.; Heinemann, U. Proteins: Struct. Funct. Genet. 1992, 14, 120 https://doi.org/10.1002/prot.340140113
  22. Schmitt, E.; Guillon, J. M.; Meinnel, T.; Mechulam, Y.; Dardel, F. Blanquet, S. Biochimie 1996, 78, 543 https://doi.org/10.1016/S0300-9084(96)80001-0
  23. Schindler, T.; Schmid, F. X. Biochemistry 1996, 35, 16833 https://doi.org/10.1021/bi962090j
  24. Welker, C.; Bohm, G.; Schurig, H.; Jaenicke, R. Protein Sci. 1999, 8, 394 https://doi.org/10.1110/ps.8.2.394
  25. Zaremba, S. M.; Gregoret, L. M. J. Mol. Biol. 1999, 291, 463 https://doi.org/10.1006/jmbi.1999.2961
  26. Hillier, B. J.; Rodriguez, H. M.; Gregoret, L. M. Fold. Des. 1998, 3, 87 https://doi.org/10.1016/S1359-0278(98)00014-5
  27. Makhatadze, G. I.; Loladze, V. V.; Gribenko, A. V.; Lopez, M. M. J. Mol. Biol. 2004, 336, 929 https://doi.org/10.1016/j.jmb.2003.12.058
  28. Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism; Wiley-VCH: 2000; pp 612-614
  29. Woody, R. W. Biopolymers 1978, 17, 1451 https://doi.org/10.1002/bip.1978.360170606
  30. Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Biochemistry 1993, 32, 5560 https://doi.org/10.1021/bi00072a010
  31. Vuilleumier, S.; Sancho, J.; Loewenthal, R.; Fersht, A. R. Biochemistry 1993, 32, 10303 https://doi.org/10.1021/bi00090a005
  32. Sreerama, N.; Manning, M. C.; Powers, M. E.; Zhang, J. X.; Goldenberg, D. P.; Woody, R. W. Biochemistry 1999, 38, 10814 https://doi.org/10.1021/bi990516z
  33. Sreeama, N.; Venyaminov, S. Y.; Woody, R. W. Protein Sci. 1999, 8, 370 https://doi.org/10.1110/ps.8.2.370
  34. Perczel, A.; Park, K.; Fasman, G. D. Proteins: Struct. Funct. Genet. 1992, 13, 57 https://doi.org/10.1002/prot.340130106

Cited by

  1. Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2508
  2. Expression of CspE by a Psychrotrophic Bacterium Enterobacter ludwigii PAS1, Isolated from Indian Himalayan Soil and In silico Protein Modelling, Prediction of Conserved Residues and Active Sites vol.66, pp.5, 2013, https://doi.org/10.1007/s00284-013-0304-y
  3. Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis vol.28, pp.4, 2009, https://doi.org/10.1007/s13562-019-00500-8